Harmonic measure and conformal length
HTML articles powered by AMS MathViewer
- by Knut Øyma
- Proc. Amer. Math. Soc. 115 (1992), 687-689
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101991-1
- PDF | Request permission
Abstract:
Let $f(z)$ be any univalent function that maps the unit disc onto a domain $\Omega$. We prove that for any line $L$ the length of ${f^{ - 1}}(\Omega \cap L)$ is less than $4\pi$.References
- Christopher J. Bishop and Peter W. Jones, Harmonic measure and arclength, Ann. of Math. (2) 132 (1990), no. 3, 511–547. MR 1078268, DOI 10.2307/1971428
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- José L. Fernández, Juha Heinonen, and Olli Martio, Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117–132. MR 981499, DOI 10.1007/BF02820475
- J. B. Garnett, F. W. Gehring, and P. W. Jones, Conformally invariant length sums, Indiana Univ. Math. J. 32 (1983), no. 6, 809–829. MR 721565, DOI 10.1512/iumj.1983.32.32055
- W. K. Hayman and J. M. G. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), no. 3, 366–403. MR 639358, DOI 10.1007/BF02566219
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 687-689
- MSC: Primary 30C35
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101991-1
- MathSciNet review: 1101991