Scrawny Cantor sets are not definable by tori
HTML articles powered by AMS MathViewer
- by Amy Babich
- Proc. Amer. Math. Soc. 115 (1992), 829-836
- DOI: https://doi.org/10.1090/S0002-9939-1992-1106178-4
- PDF | Request permission
Abstract:
We define a Cantor set $C$ in ${{\mathbf {R}}^3}$ to be scrawny if for each $p \in C$ and each $\varepsilon > 0$ there is a $\delta > 0$ such that for each map $f:{S^1} \to \operatorname {Int} B(p,\delta ) - C$ there is a map $F:{D^2} \to \operatorname {Int}{\mkern 1mu} B(p,\varepsilon )$ such that $F|\partial {D^2} = f$ and ${F^{ - 1}}(C)$ is finite. We show the existence and explore some of the properties of wild scrawny Cantor sets in ${{\mathbf {R}}^3}$. We prove, among other things, that wild scrawny Cantor sets in ${{\mathbf {R}}^3}$ are not definable by solid tori.References
- L. Antoine, Sur l’homeomorphisme de deux figures et de leurs voisinages, J. Math. Pures Appl. 4 (1921), 221-325.
A. Babich, Vorticist denizens of ${{\mathbf {R}}^3}$ are tame, PhD thesis, University of Texas at Austin, 1988.
- R. H. Bing, Tame Cantor sets in $E^{3}$, Pacific J. Math. 11 (1961), 435–446. MR 130679
- William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276–297. MR 40659, DOI 10.2307/1969543
- E. M. Brown and C. D. Feustel, On properly embedding planes in arbitrary $3$-manifolds, Proc. Amer. Math. Soc. 94 (1985), no. 1, 173–178. MR 781077, DOI 10.1090/S0002-9939-1985-0781077-2
- Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
- Tatsuo Homma, On tame imbedding of $0$-dimensional compact sets in $E^{3}$, Yokohama Math. J. 7 (1959), 191–195. MR 124037
- Edwin E. Moise, Geometric topology in dimensions $2$ and $3$, Graduate Texts in Mathematics, Vol. 47, Springer-Verlag, New York-Heidelberg, 1977. MR 0488059
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 829-836
- MSC: Primary 57M30; Secondary 28A05, 54G15, 57N12
- DOI: https://doi.org/10.1090/S0002-9939-1992-1106178-4
- MathSciNet review: 1106178