Utility functions on partially ordered topological groups
HTML articles powered by AMS MathViewer
- by Juan Carlos Candeal-Haro and Esteban Induráin Eraso
- Proc. Amer. Math. Soc. 115 (1992), 765-767
- DOI: https://doi.org/10.1090/S0002-9939-1992-1116255-X
- PDF | Request permission
Abstract:
Let $(X, + ,\tau )$ be a locally compact abelian group endowed with a translation-invariant, strongly continuous, and separable strict partial ordering "$<$." Then, there exists a continuous numerical representation for "$<$." The proof leans on the concept of Haar measure.References
- G. Cantor, Beiträge zur Begründung der transfinite Mengenlehre I, Math. Ann. 46 (1895), 481-512.
- Georg Cantor, Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann. 49 (1897), no. 2, 207–246 (German). MR 1510964, DOI 10.1007/BF01444205
- Graciela Chichilnisky, Spaces of economic agents, J. Econom. Theory 15 (1977), no. 1, 160–173. MR 496461, DOI 10.1016/0022-0531(77)90074-6
- Graciela Chichilnisky, Continuous representation of preferences, Rev. Econom. Stud. 47 (1980), no. 5, 959–963. MR 611121, DOI 10.2307/2296925
- Samuel Eilenberg, Ordered topological spaces, Amer. J. Math. 63 (1941), 39–45. MR 3201, DOI 10.2307/2371274
- Peter C. Fishburn, Utility theory for decision making, Publications in Operations Research, No. 18, John Wiley & Sons, Inc., New York-London-Sydney, 1970. MR 0264810
- G. Herden, On the existence of utility functions, Math. Social Sci. 17 (1989), no. 3, 297–313. MR 1006181, DOI 10.1016/0165-4896(89)90058-9
- G. Herden, On the existence of utility functions. II, Math. Social Sci. 18 (1989), no. 2, 107–117. MR 1016502, DOI 10.1016/0165-4896(89)90041-3
- Ghanshyam Mehta, Continuous utility functions, Econom. Lett. 18 (1985), no. 2-3, 113–115. MR 810927, DOI 10.1016/0165-1765(85)90162-4
- Ghanshyam Mehta, Existence of an order-preserving function on normally preordered spaces, Bull. Austral. Math. Soc. 34 (1986), no. 1, 141–147. MR 847982, DOI 10.1017/S0004972700004597
- Kenneth R. Mount and Stanley Reiter, Construction of a continuous utility function for a class of preferences, J. Math. Econom. 3 (1976), no. 3, 227–245. MR 429048, DOI 10.1016/0304-4068(76)90010-0 L. Nachbin,Topologia e ordem, Univ. of Chicago Press, 1950.
- Wilhelm Neuefeind, On continuous utility, J. Econom. Theory 5 (1972), no. 1, 174–176. MR 449501, DOI 10.1016/0022-0531(72)90126-3
- Bezalel Peleg, Utility functions for partially ordered topological spaces, Econometrica 38 (1970), 93–96. MR 281166, DOI 10.2307/1909243
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 765-767
- MSC: Primary 90A10; Secondary 06F15, 28C10, 54F05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1116255-X
- MathSciNet review: 1116255