$\textbf {Z}_ 2$-fixed sets of stationary point free $\textbf {Z}_ 4$-actions
HTML articles powered by AMS MathViewer
- by Claudina Izepe Rodrigues
- Proc. Amer. Math. Soc. 115 (1992), 821-828
- DOI: https://doi.org/10.1090/S0002-9939-1992-1116271-8
- PDF | Request permission
Abstract:
In this work we consider the question: Which classes in the unoriented bordism group of free ${\mathbb {Z}_2}$-actions can be realized as the ${\mathbb {Z}_2}$-fixed set of stationary point free ${\mathbb {Z}_4}$-action on a closed manifold with ${\mathbb {Z}_2}$-fixed point set having constant codimension $k$?References
- R. Paul Beem, On the bordism of almost free $Z_{2k}$ actions, Trans. Amer. Math. Soc. 225 (1977), 83–105. MR 425991, DOI 10.1090/S0002-9947-1977-0425991-6
- R. Paul Beem, The structure of $Z_{4}$ bordism, Indiana Univ. Math. J. 27 (1978), no. 6, 1039–1047. MR 511258, DOI 10.1512/iumj.1978.27.27072
- Frank L. Capobianco, Fixed sets of involutions, Pacific J. Math. 75 (1978), no. 2, 339–345. MR 506194
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- C. Kosniowski, Actions of finite abelian groups, Research Notes in Mathematics, vol. 18, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1978. MR 518871
- R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 291–316. MR 0273644
- J. C. Su, A note on the bordism algebra of involutions, Michigan Math. J. 12 (1965), 25–31. MR 179798
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 821-828
- MSC: Primary 57R85; Secondary 55N99
- DOI: https://doi.org/10.1090/S0002-9939-1992-1116271-8
- MathSciNet review: 1116271