Ahlfors functions on Denjoy domains
HTML articles powered by AMS MathViewer
- by Akira Yamada
- Proc. Amer. Math. Soc. 115 (1992), 757-763
- DOI: https://doi.org/10.1090/S0002-9939-1992-1116275-5
- PDF | Request permission
Abstract:
Let $\Delta$ be the open unit disc. We give a characterization of a set that is the complement in $\Delta$ of the image of the Ahlfors function for some maximal Denjoy domain and $\infty$. As a corollary, we show by an example that there exists such a set with positive logarithmic capacity.References
- Stephen D. Fisher, On Schwarz’s lemma and inner functions, Trans. Amer. Math. Soc. 138 (1969), 229–240. MR 240302, DOI 10.1090/S0002-9947-1969-0240302-2
- Stephen Fisher, The moduli of extremal functions, Michigan Math. J. 19 (1972), 179–183. MR 306506 T. Gamelin, Lectures on ${H^\infty }(D)$, Notas Mat., La Plata, Argentina, Vol. 21, 1972.
- John Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, Vol. 297, Springer-Verlag, Berlin-New York, 1972. MR 0454006
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971 S. Ya. Havinson, Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Amer. Math. Soc. Transl. Ser. 2, vol. 43, Amer. Math. Soc., Providence, RI, 1964, pp. 215-266.
- David Minda, The image of the Ahlfors function, Proc. Amer. Math. Soc. 83 (1981), no. 4, 751–756. MR 630049, DOI 10.1090/S0002-9939-1981-0630049-3
- Christian Pommerenke, Über die Kapazität ebener Kontinuen, Math. Ann. 139 (1959), 64–75 (1959) (German). MR 114922, DOI 10.1007/BF01459823
- Eckehard Röding, Über die Wertannahme der Ahlfors Funktion in beliebigen Gebieten, Manuscripta Math. 20 (1977), no. 2, 133–140. MR 437740, DOI 10.1007/BF01170721
- Walter Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math. Soc. 78 (1955), 333–342. MR 67192, DOI 10.1090/S0002-9947-1955-0067192-5
- L. Sario and K. Oikawa, Capacity functions, Die Grundlehren der mathematischen Wissenschaften, Band 149, Springer-Verlag New York, Inc., New York, 1969. MR 0254232
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- Akira Yamada, A remark on the image of the Ahlfors function, Proc. Amer. Math. Soc. 88 (1983), no. 4, 639–642. MR 702291, DOI 10.1090/S0002-9939-1983-0702291-6
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 757-763
- MSC: Primary 30D50; Secondary 30C85
- DOI: https://doi.org/10.1090/S0002-9939-1992-1116275-5
- MathSciNet review: 1116275