$K$-theoretical index theorems for good orbifolds
HTML articles powered by AMS MathViewer
- by Carla Farsi
- Proc. Amer. Math. Soc. 115 (1992), 769-773
- DOI: https://doi.org/10.1090/S0002-9939-1992-1127139-5
- PDF | Request permission
Abstract:
In this note we study index theory for general and good orbifolds. We prove a $K$-theoretical index theorem for good orbifolds, and from this we deduce as a corollary a numerical index formula.References
- Michael Francis Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathematics, Vol. 401, Springer-Verlag, Berlin-New York, 1974. MR 0482866
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Astérisque, No. 32-33, Soc. Math. France, Paris, 1976, pp. 43–72. MR 0420729
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717 J. L. Brylinski, Algebras associated with group actions and their homology, preprint. A. Connes, The Chern character in $K$-homology, part I, Non commutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1986), 257-360.
- Carla Farsi, $K$-theoretical index theorems for orbifolds, Quart. J. Math. Oxford Ser. (2) 43 (1992), no. 170, 183–200. MR 1164622, DOI 10.1093/qmath/43.2.183
- Michel Hilsum, Opérateurs de signature sur une variété lipschitzienne et modules de Kasparov non bornés, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 1, 49–52 (French, with English summary). MR 719945
- G. G. Kasparov, Topological invariants of elliptic operators. I. $K$-homology, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 4, 796–838 (Russian); Russian transl., Math. USSR-Izv. 9 (1975), no. 4, 751–792 (1976). MR 0488027 —, An index for invariant elliptic operators, $K$-theory, and representations of Lie groups, Soviet Math. Dokl. 27 (1983), 105-109. —, Operator $K$-theory and its applications: elliptic operators, group representations, higher signatures, ${C^*}$-extensions, Proc. Internat. Congr. of Mathematicians, Aug. 16-24, 1983, Warsaw, 1983, pp. 987-1000.
- Tetsuro Kawasaki, The signature theorem for $V$-manifolds, Topology 17 (1978), no. 1, 75–83. MR 474432, DOI 10.1016/0040-9383(78)90013-7
- Tetsuro Kawasaki, The Riemann-Roch theorem for complex $V$-manifolds, Osaka Math. J. 16 (1979), no. 1, 151–159. MR 527023
- Tetsuro Kawasaki, The index of elliptic operators over $V$-manifolds, Nagoya Math. J. 84 (1981), 135–157. MR 641150 A. Miščenko and A. T. Fomenko, The index of elliptic operators over ${C^*}$-algebras, Math. USSR-Izv. 15 (1980), 87-112.
- Marc A. Rieffel, Applications of strong Morita equivalence to transformation group $C^{\ast }$-algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 299–310. MR 679709
- Ichirô Satake, The Gauss-Bonnet theorem for $V$-manifolds, J. Math. Soc. Japan 9 (1957), 464–492. MR 95520, DOI 10.2969/jmsj/00940464
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 769-773
- MSC: Primary 58G10; Secondary 19K56, 46L80, 57R15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1127139-5
- MathSciNet review: 1127139