Two new open mapping theorems for analytic multivalued functions
HTML articles powered by AMS MathViewer
- by Line Baribeau and Sarah Harbottle
- Proc. Amer. Math. Soc. 115 (1992), 1009-1012
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086321-6
- PDF | Request permission
Abstract:
It is conjectured that the image $U$ of a domain $D$, under an analytic multivalued function $K$, satisfies $U \cap \partial U \subset { \cap _{\lambda \in D}}K(\lambda )$ if the values of $K$ are polynomially convex sets. We prove that this conjecture is true in the two special cases when $K$ is convex-valued and polar-valued.References
- Bernard Aupetit, Analytic multivalued functions in Banach algebras and uniform algebras, Adv. in Math. 44 (1982), no. 1, 18–60. MR 654547, DOI 10.1016/0001-8708(82)90064-0
- B. Berndtsson and T. J. Ransford, Analytic multifunctions, the $\overline \partial$-equation, and a proof of the corona theorem, Pacific J. Math. 124 (1986), no. 1, 57–72. MR 850666
- T. J. Ransford, Open mapping, inversion and implicit function theorems for analytic multivalued functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 537–562. MR 759303, DOI 10.1112/plms/s3-49.3.537
- T. J. Ransford, On the range of an analytic multivalued function, Pacific J. Math. 123 (1986), no. 2, 421–439. MR 840852 A. Sadullaev, Pseudoconcave sets and algebraic lemniscates, preprint.
- Zbigniew Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363–386. MR 626955, DOI 10.1007/BF01679703
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 1009-1012
- MSC: Primary 32E20; Secondary 30G30, 46J15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086321-6
- MathSciNet review: 1086321