Groups with many rewritable products
HTML articles powered by AMS MathViewer
- by Mario Curzio, Patrizia Longobardi, Mercede Maj and Akbar Rhemtulla
- Proc. Amer. Math. Soc. 115 (1992), 931-934
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086580-X
- PDF | Request permission
Abstract:
For any integer $n \geq 2$, denote by ${R_n}$ the class of groups $G$ in which every infinite subset $X$ contains $n$ elements ${x_1}, \ldots ,{x_n}$ such that the product ${x_1} \ldots {x_n} = {x_{\sigma (1)}} \cdots {x_{\sigma (n)}}$ for some permutation $\sigma \ne 1$. The case $n = 2$ was studied by B. H. Neumann who proved that ${R_2}$ is precisely the class of centre-by-finite groups. Here we show that $G \in {R_n}$ for some $n$ if and only if $G$ contains an FC-subgroup $F$ of finite index such that the exponent of $F/Z(F)$ is finite, where $Z(F)$ denotes the centre of $F$.References
- Russell D. Blyth, Rewriting products of group elements. I, J. Algebra 116 (1988), no. 2, 506–521. MR 953167, DOI 10.1016/0021-8693(88)90233-5
- Russell D. Blyth, Rewriting products of group elements. II, J. Algebra 119 (1988), no. 1, 246–259. MR 971358, DOI 10.1016/0021-8693(88)90088-9
- Russell D. Blyth and Akbar H. Rhemtulla, Rewritable products in FC-by-finite groups, Canad. J. Math. 41 (1989), no. 2, 369–384. MR 1001616, DOI 10.4153/CJM-1989-018-8
- Mario Curzio, Patrizia Longobardi, and Mercede Maj, On a combinatorial problem in group theory, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 74 (1983), no. 3, 136–142 (Italian, with English summary). MR 739397
- Mario Curzio, Patrizia Longobardi, Mercede Maj, and Derek J. S. Robinson, A permutational property of groups, Arch. Math. (Basel) 44 (1985), no. 5, 385–389. MR 792360, DOI 10.1007/BF01229319
- J. R. J. Groves, A conjecture of Lennox and Wiegold concerning supersoluble groups, J. Austral. Math. Soc. Ser. A 35 (1983), no. 2, 218–220. MR 704428
- John C. Lennox and James Wiegold, Extensions of a problem of Paul Erdős on groups, J. Austral. Math. Soc. Ser. A 31 (1981), no. 4, 459–463. MR 638274
- B. H. Neumann, A problem of Paul Erdős on groups, J. Austral. Math. Soc. Ser. A 21 (1976), no. 4, 467–472. MR 419283, DOI 10.1017/s1446788700019303
- M. J. Tomkinson, $\textrm {FC}$-groups, Research Notes in Mathematics, vol. 96, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 742777
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 931-934
- MSC: Primary 20F24
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086580-X
- MathSciNet review: 1086580