Free summands in maximal Cohen-Macaulay approximations and Eisenbud operators over hypersurface rings
HTML articles powered by AMS MathViewer
- by Alex Martsinkovsky
- Proc. Amer. Math. Soc. 115 (1992), 915-921
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086584-7
- PDF | Request permission
Abstract:
The Eisenbud operator of a module over a complete hypersurface ring completely determines the delta invariants of this module.References
- Maurice Auslander and Ragnar-Olaf Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) 38 (1989), 5–37 (English, with French summary). Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044344
- R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165–182. MR 877011, DOI 10.1007/BF01405096 S. Ding, Cohen-Macaulay approximations over a Gotenslein local ring, Thesis, Brandeis Univ., 1990.
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7 A. Martsinkovsky, Almost split sequences and Zariski differentials, Thesis, Brandeis Univ., 1987.
- Alex Martsinkovsky, Maximal Cohen-Macaulay modules and the quasihomogeneity of isolated Cohen-Macaulay singularities, Proc. Amer. Math. Soc. 112 (1991), no. 1, 9–18. MR 1042270, DOI 10.1090/S0002-9939-1991-1042270-X
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 915-921
- MSC: Primary 13C14
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086584-7
- MathSciNet review: 1086584