A note on coherent rings of dimension two
HTML articles powered by AMS MathViewer
- by Yi Cai Zhao
- Proc. Amer. Math. Soc. 115 (1992), 935-937
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086586-0
- PDF | Request permission
Abstract:
It is shown that a commutative coherent domain cannot have Ng dimension 2 and a commutative coherent regular ring of Ng dimension 2 cannot have finite indecomposable decomposition.References
- Sarah Glaz, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989. MR 999133, DOI 10.1007/BFb0084570
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Ho Kuen Ng, Coherent rings of dimension two, Proc. Amer. Math. Soc. 91 (1984), no. 4, 518–522. MR 746080, DOI 10.1090/S0002-9939-1984-0746080-6
- Ho Kuen Ng, Finitely presented dimension of commutative rings and modules, Pacific J. Math. 113 (1984), no. 2, 417–431. MR 749546, DOI 10.2140/pjm.1984.113.417
- Wolmer V. Vasconcelos, On projective modules of finite rank, Proc. Amer. Math. Soc. 22 (1969), 430–433. MR 242807, DOI 10.1090/S0002-9939-1969-0242807-2
- Wolmer V. Vasconcelos, The local rings of global dimension two, Proc. Amer. Math. Soc. 35 (1972), 381–386. MR 308115, DOI 10.1090/S0002-9939-1972-0308115-6 —, The rings of dimension 2, Lecture Notes in Pure Appl. Math., vol. 22, Marcel Dekker, New York, 1976.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 935-937
- MSC: Primary 13C15; Secondary 13D05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086586-0
- MathSciNet review: 1086586