Finite groups in which the degrees of the nonlinear irreducible characters are distinct
HTML articles powered by AMS MathViewer
- by Yakov Berkovich, David Chillag and Marcel Herzog
- Proc. Amer. Math. Soc. 115 (1992), 955-959
- DOI: https://doi.org/10.1090/S0002-9939-1992-1088438-9
- PDF | Request permission
Abstract:
Finite groups in which all the nonlinear irreducible characters have equal degrees were described by Isaacs, Passman, and others. The purpose of this article is to consider the other extreme, namely, to characterize all finite groups in which all the nonlinear irreducible characters have distinct degrees.References
- A. R. Camina, Some conditions which almost characterize Frobenius groups, Israel J. Math. 31 (1978), no.Β 2, 153β160. MR 516251, DOI 10.1007/BF02760546
- David Chillag and I. D. Macdonald, Generalized Frobenius groups, Israel J. Math. 47 (1984), no.Β 2-3, 111β122. MR 738162, DOI 10.1007/BF02760510
- David Chillag, Avinoam Mann, and Carlo M. Scoppola, Generalized Frobenius groups. II, Israel J. Math. 62 (1988), no.Β 3, 269β282. MR 955132, DOI 10.1007/BF02783297
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, vol. 7, Marcel Dekker, Inc., New York, 1971. MR 0347959
- Walter Feit and Gary M. Seitz, On finite rational groups and related topics, Illinois J. Math. 33 (1989), no.Β 1, 103β131. MR 974014
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- Donald Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0237627
- Gary Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc. 19 (1968), 459β461. MR 222160, DOI 10.1090/S0002-9939-1968-0222160-X
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 955-959
- MSC: Primary 20C20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1088438-9
- MathSciNet review: 1088438