The Evans-Griffith syzygy theorem and Bass numbers
HTML articles powered by AMS MathViewer
- by Winfried Bruns
- Proc. Amer. Math. Soc. 115 (1992), 939-946
- DOI: https://doi.org/10.1090/S0002-9939-1992-1088439-0
- PDF | Request permission
Abstract:
Let $(R,\mathfrak {m})$ be a Noetherian local ring containing a field. The syzygy theorem of Evans and Griffith (see The syzygy problem, Ann. of Math. (2) 114 (1981), 323-353) says that a nonfree $m$th syzygy module $M$ over $R$ which has finite projective dimension must have rank $\geq m$. This theorem is an assertion about the ranks of the homomorphisms in certain acyclic complexes. It is the aim of this paper to demonstrate that the condition of acyclicity can be relaxed in a natural way. We shall use the generalization thus obtained to show that the Bass numbers of a module satisfy restrictions analogous to those which the syzygy theorem imposes on Betti numbers.References
- Jaap Bartijn and Jan R. Strooker, Modifications monomiales, Paul Dubreil and Marie-Paule Malliavin algebra seminar, 35th year (Paris, 1982) Lecture Notes in Math., vol. 1029, Springer, Berlin, 1983, pp. 192–217 (French). MR 732476, DOI 10.1007/BFb0098932
- Winfried Bruns, “Jede” endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals, J. Algebra 39 (1976), no. 2, 429–439. MR 399074, DOI 10.1016/0021-8693(76)90047-8
- David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR 314819, DOI 10.1016/0021-8693(73)90044-6
- E. Graham Evans and Phillip Griffith, The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. MR 632842, DOI 10.2307/1971296 —, The syzygy theorem: a new proof and historical perspective (R. Y. Sharp, ed.), (Commutative Algebra: Durham 1981), London Math. Soc. Lecture Note Ser., vol. 72, Cambridge Univ. Press, New York, 1982, pp. 2-11. —, Syzygies, London Math. Soc. Lecture Note Ser., vol. 106, Cambridge Univ. Press, Cambridge, 1985.
- Hans-Bjørn Foxby, On the $\mu ^{i}$ in a minimal injective resolution. II, Math. Scand. 41 (1977), no. 1, 19–44. MR 476801, DOI 10.7146/math.scand.a-11700
- Phillip Griffith, Maximal Cohen-Macaulay modules and representation theory, J. Pure Appl. Algebra 13 (1978), no. 3, 321–334. MR 509166, DOI 10.1016/0022-4049(78)90013-0
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620
- Melvin Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, Conference on Commutative Algebra—1975 (Queen’s Univ., Kingston, Ont., 1975) Queen’s Papers on Pure and Applied Math., No. 42, Queen’s Univ., Kingston, Ont., 1975, pp. 106–195. MR 0396544
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- D. G. Northcott, Finite free resolutions, Cambridge Tracts in Mathematics, No. 71, Cambridge University Press, Cambridge-New York-Melbourne, 1976. MR 0460383
- Tetsushi Ogoma, A note on the syzygy problem, Comm. Algebra 17 (1989), no. 8, 2061–2066. MR 1013483, DOI 10.1080/00927878908823836
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130
- R. Y. Sharp, Cohen-Macaulay properties for balanced big Cohen-Macaulay modules, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 229–238. MR 620732, DOI 10.1017/S0305004100058680
- Santiago Zarzuela, Systems of parameters for non-finitely generated modules and big Cohen-Macaulay modules, Mathematika 35 (1988), no. 2, 207–215. MR 986630, DOI 10.1112/S0025579300015205
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 939-946
- MSC: Primary 13D02; Secondary 13C14, 13C15, 13D25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1088439-0
- MathSciNet review: 1088439