A note on Krylov-Tso’s parabolic inequality
HTML articles powered by AMS MathViewer
- by Luis Escauriaza
- Proc. Amer. Math. Soc. 115 (1992), 1053-1056
- DOI: https://doi.org/10.1090/S0002-9939-1992-1092918-X
- PDF | Request permission
Abstract:
We show that if $u$ is a solution to $\sum \nolimits _{i,j = 1}^n {{a_{ij}}(x,t){D_{ij}}u(x,t) - {D_t}u(x,t) = \phi (x)}$ on a cylinder ${\Omega _T} = \Omega \times (0,T)$, where $\Omega$ is a bounded open set in ${{\mathbf {R}}^n},T > 0$, and $u$ vanishes continuously on the parabolic boundary of ${\Omega _T}$. Then the maximum of $u$ on the cylinder is bounded by a constant $C$ depending on the ellipticity of the coefficient matrix $({a_{ij}}(x,t))$, the diameter of $\Omega$, and the dimension $n$ times the ${L^n}$ norm of $\phi$ in $\Omega$.References
- A. D. Aleksandrov, Majorants of solutions of linear equations of order two, Vestnik Leningrad. Univ. 21 (1966), no. 1, 5–25 (Russian, with English summary). MR 0199540
- I. Ja. Bakel′man, On the theory of quasilinear elliptic equations, Sibirsk. Mat. Ž. 2 (1961), 179–186 (Russian). MR 0126604
- Bartolomé Barceló, Luis Escauriaza, and Eugene Fabes, Gradient estimates at the boundary for solutions to nondivergence elliptic equations, Harmonic analysis and partial differential equations (Boca Raton, FL, 1988) Contemp. Math., vol. 107, Amer. Math. Soc., Providence, RI, 1990, pp. 1–12. MR 1066466, DOI 10.1090/conm/107/1066466
- E. B. Fabes and D. W. Stroock, The $L^p$-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations, Duke Math. J. 51 (1984), no. 4, 997–1016. MR 771392, DOI 10.1215/S0012-7094-84-05145-7
- Kaising Tso, On an Aleksandrov-Bakel′man type maximum principle for second-order parabolic equations, Comm. Partial Differential Equations 10 (1985), no. 5, 543–553. MR 790223, DOI 10.1080/03605308508820388
- N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sibirsk. Mat. Ž. 17 (1976), no. 2, 290–303, 478 (Russian). MR 0420016
- Carlo Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74 (1966), 15–30 (Italian, with English summary). MR 214905, DOI 10.1007/BF02416445 N. N. Ural’zeva and O. A. Ladyzhenskaya, A survey of results on the solvability of boundary value problems for second order uniformly elliptic and parabolic quasilinear equations having unbounded singularities, Russian Math. Surveys 41 (1986).
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 1053-1056
- MSC: Primary 35K20; Secondary 35B05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1092918-X
- MathSciNet review: 1092918