Gaussian periods and units in certain cyclic fields
HTML articles powered by AMS MathViewer
- by Andrew J. Lazarus
- Proc. Amer. Math. Soc. 115 (1992), 961-968
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093600-5
- PDF | Request permission
Abstract:
We analyze the property of period-unit integer translation (there exists a Gaussian period $\eta$ and rational integer $c$ such that $\eta + c$ is a unit) in simplest quadratic, cubic, and quartic fields of arbitrary conductor. This is an extension of work of E. Lehmer, R. Schoof, and L. C. Washington for prime conductor. We also determine the Gaussian period polynomial for arbitrary conductor.References
- Paul Bachmann, Die Lehre von der Kreisteilung, Verlag and Druck von B. G. Teubner, Leipzig and Berlin, 1927.
- Albert Châtelet, Arithmétique des corps abéliens du troisième degré, Ann. Sci. École Norm. Sup. (3) 63 (1946), 109–160 (1947) (French). MR 0020598 Carl Friedrich Gauss, Theoria residuorum biquadraticorum: commentatio prima, Werke, Königlichen Gesellschaft der Wissenschaften, Göttingen, 1876, pp. 65-92; originally published 1825. Marie-Nicole Gras, Table numérique du nombre de classes et des unités des extensions cycliques de degré 4 de $\mathbb {Q}$, Publ. Math. Fac. Sci. Besançon, 1977/1978.
- Kenneth Hardy, R. H. Hudson, D. Richman, Kenneth S. Williams, and N. M. Holtz, Calculation of the class numbers of imaginary cyclic quartic fields, Math. Comp. 49 (1987), no. 180, 615–620. MR 906194, DOI 10.1090/S0025-5718-1987-0906194-5 Helmut Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Math. Abhand., Walter deGruyter, Berlin, 1975, pp. 285-379; originally published 1950.
- Kenneth F. Ireland and Michael I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York-Berlin, 1982. Revised edition of Elements of number theory. MR 661047
- Andrew J. Lazarus, Class numbers of simplest quartic fields, Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 313–323. MR 1106670
- Andrew J. Lazarus, On the class number and unit index of simplest quartic fields, Nagoya Math. J. 121 (1991), 1–13. MR 1096465, DOI 10.1017/S0027763000003378
- Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535–541. MR 929551, DOI 10.1090/S0025-5718-1988-0929551-0
- Toru Nakahara, On cyclic biquadratic fields related to a problem of Hasse, Monatsh. Math. 94 (1982), no. 2, 125–132. MR 678047, DOI 10.1007/BF01301930
- Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535–541. MR 929551, DOI 10.1090/S0025-5718-1988-0929551-0
- Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI 10.1090/S0025-5718-1974-0352049-8
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 961-968
- MSC: Primary 11R16; Secondary 11L05, 11R27
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093600-5
- MathSciNet review: 1093600