Lipscomb’s $L(A)$ space fractalized in Hilbert’s $l^ 2(A)$ space
HTML articles powered by AMS MathViewer
- by S. L. Lipscomb and J. C. Perry
- Proc. Amer. Math. Soc. 115 (1992), 1157-1165
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093602-9
- PDF | Request permission
Abstract:
By extending adjacent-endpoint identification in Cantor’s space $N(\{ 0,1\} )$ to Baire’s space $N(A)$, we move from the unit interval $I = L(\{ 0,1\} )$ to $L(A)$. The metric spaces $L{(A)^{n + 1}}$ and $L{(A)^\infty }$ have provided nonseparable analogues of Nöbeling’s and Urysohn’s imbedding theorems. To date, however, $L(A)$ has no metric description. Here, we imbed $L(A)$ in ${l^2}(A)$ and the induced metric yields a geometrical interpretation of $L(A)$. Except for the small last section, we are concerned with the imbedding. Once inside ${l^2}(A)$, we see $L(A)$ as a subspace of a "closed simplex" ${\Delta ^A}$ having the standard basis vectors together with the origin as vertices. The part of $L(A)$ in each $n$-dimensional face ${\sigma ^n}$ of ${\Delta ^A}$ is a "generalized Sierpiński Triangle" called an $n$ -web ${\omega ^n}$. Topologically, ${\omega ^n}$ is $L(\{ 0,1, \ldots ,n\} )$. For $n = 2,{\omega ^2}$ is just the usual Sierpiński Triangle in ${E^2}$; for $n = 3,{\omega ^3}$ is Mandelbrot’s fractal skewed web. Thus, $L(A) \to {l^2}(A)$ invites an extension of fractals. That is, when $|A|$ infinite, Baire’s Space $N(A)$ is a "generalized code space" on $|A|$ symbols that addresses the points of the "generalized fractal" $L(A)$.References
- Michael Barnsley, Fractals everywhere, Academic Press, Inc., Boston, MA, 1988. MR 977274
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Hans-Joachim Kowalsky, Einbettung metrischer Räume, Arch. Math. (Basel) 8 (1957), 336–339 (German). MR 91451, DOI 10.1007/BF01900142 S. L. Lipscomb, Imbedding one dimensional metric spaces, Univ. of Virginia Dissertation, University Microfilms, Ann Arbor, MI, 1973.
- Stephen Leon Lipscomb, A universal one-dimensional metric space, TOPO 72—general topology and its applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974, pp. 248–257. MR 0358738
- Stephen Leon Lipscomb, On imbedding finite-dimensional metric spaces, Trans. Amer. Math. Soc. 211 (1975), 143–160. MR 380751, DOI 10.1090/S0002-9947-1975-0380751-8
- Stephen Leon Lipscomb, An imbedding theorem for metric spaces, Proc. Amer. Math. Soc. 55 (1976), no. 1, 165–169. MR 391034, DOI 10.1090/S0002-9939-1976-0391034-0
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe für den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif., 1982. MR 665254
- Kiiti Morita and Sitiro Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10–14. MR 87077
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- J. Nagata, Topics in dimension theory, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 497–506. MR 698449 —, A survey of dimension theory. III, Proc. Steklov Inst. Math. 4 (1984), 201-213.
- Jun-iti Nagata, A remark on general imbedding theorems in dimension theory, Proc. Japan Acad. 39 (1963), 197–199. MR 164319 G. Nöbeling, Über eine $n$-dimensionale Universalmenge im ${R_{2n + 1}}$, Math. Ann. 104 (1930), 71-80.
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
- Paul Urysohn, Zum Metrisationsproblem, Math. Ann. 94 (1925), no. 1, 309–315 (German). MR 1512260, DOI 10.1007/BF01208661
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 1157-1165
- MSC: Primary 54H05; Secondary 54B15, 58F08
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093602-9
- MathSciNet review: 1093602