Zero-dimensionality in commutative rings
HTML articles powered by AMS MathViewer
- by Robert Gilmer and William Heinzer
- Proc. Amer. Math. Soc. 115 (1992), 881-893
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095223-0
- PDF | Request permission
Abstract:
If ${\left \{ {{R_\alpha }} \right \}_{\alpha \in A}}$ is a family of zero-dimensional subrings of a commutative ring $T$, we show that ${ \cap _{\alpha \in A}}{R_\alpha }$ is also zero-dimensional. Thus, if $R$ is a subring of a zero-dimensional subring $[unk]\;T$ (a condition that is satisfied if and only if a power of $rT$ is idempotent for each $r \in R$, then there exists a unique minimal zero-dimensional subring ${R^0}$ of $T$ containing $R$. We investigate properties of ${R^0}$ as an $R$-algebra, and we show that ${R^0}$ is unique, up to $R$-isomorphism, only if $R$ itself is zero-dimensional.References
- M. Arapović, Characterizations of the $0$-dimensional rings, Glasnik Mat. Ser. III 18(38) (1983), no. 1, 39–46 (English, with Serbo-Croatian summary). MR 710383
- M. Arapović, Characterizations of the $0$-dimensional rings, Glasnik Mat. Ser. III 18(38) (1983), no. 1, 39–46 (English, with Serbo-Croatian summary). MR 710383
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 0427289
- Robert Gilmer and William Heinzer, On the imbedding of a direct product into a zero-dimensional commutative ring, Proc. Amer. Math. Soc. 106 (1989), no. 3, 631–636. MR 969521, DOI 10.1090/S0002-9939-1989-0969521-2
- Robert Gilmer and William Heinzer, Products of commutative rings and zero-dimensionality, Trans. Amer. Math. Soc. 331 (1992), no. 2, 663–680. MR 1041047, DOI 10.1090/S0002-9947-1992-1041047-4
- Robert Gilmer and William Heinzer, Artinian subrings of a commutative ring, Trans. Amer. Math. Soc. 336 (1993), no. 1, 295–310. MR 1102887, DOI 10.1090/S0002-9947-1993-1102887-7
- Sarah Glaz, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989. MR 999133, DOI 10.1007/BFb0084570
- James A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, vol. 117, Marcel Dekker, Inc., New York, 1988. MR 938741
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Paolo Maroscia, Sur les anneaux de dimension zéro, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 56 (1974), no. 4, 451–459 (French, with Italian summary). MR 0389877 J. P. Olivier, Anneaux absolument plats universels et epimorphismes a buts reduits, Sem. Samuel, Paris, 1967-68.
- Nicolae Popescu and Constantin Vraciu, Some remarks about the regular ring associated to a commutative ring, Rev. Roumaine Math. Pures Appl. 23 (1978), no. 2, 269–277. MR 472899
- Roger Wiegand, Descent of projectivity for locally free modules, Proc. Amer. Math. Soc. 41 (1973), 342–348. MR 327737, DOI 10.1090/S0002-9939-1973-0327737-0
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Graduate Texts in Mathematics, Vol. 29, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition. MR 0389876
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 881-893
- MSC: Primary 13C15; Secondary 13A99, 13E10
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095223-0
- MathSciNet review: 1095223