On the Kostant convexity theorem
HTML articles powered by AMS MathViewer
- by François Ziegler
- Proc. Amer. Math. Soc. 115 (1992), 1111-1113
- DOI: https://doi.org/10.1090/S0002-9939-1992-1111441-7
- PDF | Request permission
Abstract:
A quick proof that the coadjoint orbits of a compact connected Lie group project onto convex polytopes in the dual of a Cartan subalgebra.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- Michèle Audin, The topology of torus actions on symplectic manifolds, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 1991. Translated from the French by the author. MR 1106194, DOI 10.1007/978-3-0348-7221-8
- G. L. Luke (ed.), Representation theory of Lie groups, Cambridge University Press, Cambridge, 1979. MR 568880
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), no. 3, 515–538. MR 664118, DOI 10.1007/BF01398934 G. J. Heckman, Projections of orbits and asymptotic behaviour of multiplicities for compact Lie groups, Thesis, Leiden, 1980.
- G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333–356. MR 665160, DOI 10.1007/BF01393821
- Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 364552 J. P. Serre, Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d’après A. Borel & A. Weil), Séminaire Bourbaki 100 (1954).
- J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970 (French). Maîtrises de mathématiques. MR 0260238
- J. Tits, Sur certaines classes d’espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8$^\circ$ 29 (1955), no. 3, 268 (French). MR 76286
- V. G. Kac and D. H. Peterson, Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Invent. Math. 76 (1984), no. 1, 1–14. MR 739620, DOI 10.1007/BF01388487
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 115 (1992), 1111-1113
- MSC: Primary 22E60; Secondary 22E15, 58F06
- DOI: https://doi.org/10.1090/S0002-9939-1992-1111441-7
- MathSciNet review: 1111441