HANDLEBODY COMPLEMENTS IN THE 3-SPHERE:
A REMARK ON A THEOREM OF FOX

MARTIN SCHARLEMANN

(Communicated by James E. West)

Abstract. Let W be a compact 3-dimensional submanifold of S^3, and C be a collection of disjoint simple closed curves on ∂W. We give necessary and sufficient conditions (one extrinsic, one intrinsic) for W to have an embedding in S^3 so that $S^3 - W$ is a union of handlebodies, and C contains a complete collection of meridia for these handlebodies.

A theorem of Fox [F] says that any connected compact 3-dimensional submanifold W of S^3 is homeomorphic to the complement of a union of handlebodies in S^3. Call a collection C of simple closed curves in ∂W proto-meridinal if there is some embedding of W in S^3 so that the complement of W is a union of handlebodies and C contains a complete collection of meridia for this handlebody. It is natural to ask whether a given collection C of simple closed curves in ∂W is proto-meridinal. This is a difficult question to answer. For example, if ∂W is a torus, either W is a solid torus or only one curve in ∂W is proto-meridinal. The proof is essentially the celebrated solution by Gordon and Luecke [GL] of the knot complement conjecture.

For genus(∂W) > 1 the problem seems intractable. But it does make sense to ask the following question: What conditions on the given embedding of W in S^3 (called extrinsic conditions) and what conditions on the pair (W, C) itself (called intrinsic conditions) suffice to guarantee that C is proto-meridinal? The general goal is to discover intrinsic conditions that allow extrinsic conditions to be weakened. Here it is shown that a simple intrinsic condition allows one to reduce the extrinsic requirements to a simple condition on C regarded as a link in S^3.

Let C be a collection of disjoint simple closed curves in $\partial W \subset W \subset S^3$. The normal direction to ∂W in S^3 determines (up to orientation) a framing of the normal bundle $\eta(C)$ of C in S^3. Suppose C is the unlink in S^3 and Δ is a collection of disjoint disks that C bounds. Then the normal of C into Δ also determines (up to orientation) a framing on $\eta(C)$. If the framings coincide (up to orientation) then we say that C is a framed unlink.

A collection of disjoint simple closed curves in the boundary of a handlebody
is a complete collection of meridia if it bounds a set of disjoint disks whose complementary closure is the 3-ball.

Theorem. Suppose \(W \) is a connected compact 3-dimensional submanifold of \(S^3 \) and \(C \) is a family of disjoint simple closed curves in \(\partial W \) that is a framed unlink in \(S^3 \). Then \(C \) is proto-meridinal if and only if \(H_2(W, \partial W - C) \to H_2(W, \partial W) \) is trivial.

Proof. The condition on \(H_2 \) can be stated geometrically: Any properly embedded surface in \(W \) whose boundary is disjoint from \(C \) must be separating.

One direction is easy. Suppose \(S^3 - W \) is a union \(H \) of handlebodies and \(C \) contains a complete set of meridia for \(H \). Then any simple closed curve in \(\partial W - C \) bounds a disk in \(H \). Hence any properly embedded surface \(S \) in \(W \) whose boundary lies in \(\partial W - C \) can be capped off to give a closed surface in \(S^3 \), which must be separating. Then \(S \) is separating in \(W \).

For the other direction, we first find a compressing disk \(E \) for \(\partial W \) in \(S^3 - W \) such that \(\partial E \) is disjoint from \(C \). Recall that \(C \) is the framed unlink. Let \(\Delta \) denote a disjoint collection of disks bounded by \(C \) in \(S^3 \), chosen to minimize the number of components of intersection with \(\partial W \). Since the framing of \(\eta(C) \), given by the normal into \(\Delta \) coincides with the framing given by the normal to \(\partial W \) in \(S^3 \), \(\Delta \) can be put in general position with respect to \(\partial W \) so that \(\Delta \cap \partial W \) consists of a set of simple closed curves in \(\Delta \), possibly just \(C \). Choose \(\Delta \) so as to minimize the number of components of \(\Delta \cap \partial W \). Then an innermost circle of intersection of \(\partial W \) with \(\Delta \) (or a component of \(\partial \Delta \)) is an essential circle in \(\partial W \) that is disjoint from \(\partial \Delta \) = \(C \) and bounds a disk \(E \) in \(S^3 - \partial W \).

We now proceed by induction on \(\beta_1 - \beta_0 \), where \(\beta_i \) is the \(i \)th betti number of the union of all nonspherical components of \(\partial W \). If \(\beta_1 - \beta_0 = 0 \), then \(\partial W \) consists of spheres and there is nothing to prove. The hypothesis is that \(H_2(W, \partial W - C) \to H_2(W, \partial W) \) is trivial. With no loss we may assume all curves of \(C \) are essential in \(\partial W \). Consider the following possibilities for \(E \):

Case 1. \(E \) lies in \(W \). Since \(H_2(W, \partial W - C) \to H_2(W, \partial W) \) is trivial, \(E \) is separating, and so decomposes \(W \) into the boundary connected sum of two manifolds \(W_1 \) and \(W_2 \), each with boundary of lower genus than that of \(W \). By inductive assumption, each \(W_i \) can be embedded in the 3-sphere so that \(S^3 - W_i \) is a union of handlebodies \(H_i \) in which some subset \(C_i \) of \(C \cap \partial W_i \) bounds a complete collection of meridia. Then the connected sum of these spheres along 3-balls bisected by the equatorial disk \(E \subset \partial W_i \) gives an embedding of \(W \) in \(S^3 \) whose complement is the boundary sum of \(H_1 \) and \(H_2 \), hence a union of handlebodies, in which \(C_1 \cup C_2 \subset C \), is a complete collection of meridia.

Case 2. \(E \) lies in \(S^3 - W \). Let \(W' \) be the manifold obtained from \(W \) by attaching a 2-handle \(\eta(E) \) along \(E \). Let \(C' \) be the subcollection of \(C \) that remains essential in \(\partial W' \). Suppose there were a nonseparating surface \(S' \) in \(W' \) with \(\partial S' \subset \partial W' - C' \). Any element of \(C - C' \) is inessential in \(\partial W' \) so we may isotope \(\partial S' \) to be disjoint from \(C \). By general position we may take \(S' \cap \eta(E) \) to be disks parallel to \(E \). Then \(S = S' \cap W \) would be a nonseparating surface in \(W \) with \(\partial S \subset \partial W - C \). We conclude that such a surface \(S' \) cannot exist; i.e., \(H_2(W', \partial W' - C') \to H_2(W', \partial W') \) is trivial. By induction, there is an embedding of \(W' \) in \(S^3 \) so that \(S^3 - W' \) is a union of handlebodies \(H' \) in which \(C' \) bounds a complete collection of meridia. Now remove the 2-handle
to regain W. Its complement H is obtained by attaching a 1-handle to H', so H is also a union of handlebodies.

Subcase (a). E is separating. Then C' also contains a complete collection of meridia for $S^3 - W$.

If E is nonseparating, the sides of the 2-handle E_{\pm} lie on the same component T' of $\partial W'$. Let T be the corresponding component of ∂W, containing ∂E.

Subcase (b). E_{\pm} lie in different components of $T' - C$. Then there is a curve $c' \in C$ that separates T' so that E_{+} and E_{-} lie in different components of $T' - c'$. Since $C' \subset C$ contains a complete collection of meridia C'' of H', it follows that c' bounds a separating disk D in H'. After sliding the entire contents (handles and curves) of one component of $H' - D$ over the 1-handle dual to E, D becomes the cocore of that 1-handle and $C'' \cup c' \subset C$ becomes a complete collection of meridia curves for H.

Subcase (c). E_{\pm} lie in the same component of $T' - C$. Then there is a circle d in $T - C$ intersecting ∂E precisely once. If T is not a torus, then banding together E_{\pm} along $d - E$ gives an essential separating disk in $S^3 - W$ with boundary in $T - C$, i.e., Subcase (a). If T is a torus, then $\partial E \cup d$ is a spine of T, so T is disjoint from C. Consider $Q = \partial W - T$. The image of $H_1(Q - C)$ in $H_1(Q)$ has rank at least $\text{genus}(Q) = \text{genus}(\partial W) - 1$. Hence the image of $H_1(\partial W - C)$ in $H_1(\partial W)$ has rank at least $\text{genus}(Q) + \beta_1(T) = \text{genus}(\partial W) + 1$. But it is a well-known consequence of Poincaré duality that the image of $H_1(\partial W)$ in $H_1(W)$ has rank $= \text{genus}(\partial W)$. Hence there is an α in $H_1(\partial W - C)$ that maps nontrivially to $H_1(\partial W)$ but trivially to $H_1(W)$. Then an element in $H_2(W, \partial W - C)$ mapping to α, cannot map trivially to $H_2(W, \partial W)$. This contradicts the hypothesis that $H_2(W, \partial W - C) \to H_2(W, \partial W)$ is trivial. \square

Remark. The condition on framings is necessary: Let T be the standard unknotted torus in S^3, separating S^3 into two solid tori, one with meridian μ, and the other with meridian λ. Let $W = T \times I$ be a collar so that $\mu \times \{0\}$ and $\lambda \times \{1\}$ are meridia for the solid tori $S^3 - W$. Let $c_1 = \mu \times \{0\}$ and c_2 be the curve in $T \times \{1\}$ homologous to $\mu + p\lambda$, $|p| > 1$. Then $c_1 \cup c_2$ is the unlink in S^3 and $H_2(W, \partial W - C) = 0$. But since in T, $c_1 \cdot c_2 = p \neq \pm 1$, there is no embedding of W in S^3 for which c_1 and c_2 are meridia of distinct complementary solid tori.

To see the difficulty, note that any disk that c_2 bounds in W will have a transverse intersection arc with ∂W. This arc is a consequence of the mismatch of framings and immediately prevents the construction of E in the proof of the theorem.

References

Department of Mathematics, University of California, Santa Barbara, California 93106