Range transformations on a Banach function algebra. IV
HTML articles powered by AMS MathViewer
- by Osamu Hatori
- Proc. Amer. Math. Soc. 116 (1992), 149-156
- DOI: https://doi.org/10.1090/S0002-9939-1992-1073526-3
- PDF | Request permission
Abstract:
Functions in ${\text {Op}}\left ( {{I_D},\operatorname {Re} A + L} \right )$ are harmonic on $D$ for a closed subalgebra $A$ of ${C_0}\left ( Y \right )$, an ideal $I$ of $A$ and a linear subspace $L$ of finite dimension in ${C_0}{,_R}\left ( Y \right )$ unless the uniform closure of $I$ is selfadjoint.References
- A. Bernard, Espace des parties réelles des éléments d’une algèbre de Banach de fonctions, J. Functional Analysis 10 (1972), 387–409 (French, with English summary). MR 0343037, DOI 10.1016/0022-1236(72)90036-5
- R. B. Burckel, Characterizations of $C(X)$ among its subalgebras, Lecture Notes in Pure and Applied Mathematics, Vol. 6, Marcel Dekker, Inc., New York, 1972. MR 0442687
- Osamu Hatori, Functions which operate on the real part of a function algebra, Proc. Amer. Math. Soc. 83 (1981), no. 3, 565–568. MR 627693, DOI 10.1090/S0002-9939-1981-0627693-6
- Osamu Hatori, Range transformations on a Banach function algebra, Trans. Amer. Math. Soc. 297 (1986), no. 2, 629–643. MR 854089, DOI 10.1090/S0002-9947-1986-0854089-3
- Osamu Hatori, Range transformations on a Banach function algebra. II, Pacific J. Math. 138 (1989), no. 1, 89–118. MR 992176
- Kenneth Hoffman and John Wermer, A characterization of $C(X)$, Pacific J. Math. 12 (1962), 941–944. MR 150324
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 149-156
- MSC: Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-1992-1073526-3
- MathSciNet review: 1073526