$K_ 0$ of certain subdiagonal subalgebras of von Neumann algebras
HTML articles powered by AMS MathViewer
- by Richard Baker
- Proc. Amer. Math. Soc. 116 (1992), 13-19
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093591-7
- PDF | Request permission
Abstract:
We show that ${K_0}$ of any finite maximal subdiagonal subalgebra of a separably acting finite von Neumann algebra is isomorphic to ${K_0}$ of the diagonal of the subalgebra. It results that ${K_0}$ of any finite, $\sigma$-weakly closed, maximal triangular subalgebra of a separably acting finite von Neumann algebra is isomorphic to ${K_0}$ of the diagonal of the subalgebra, provided that the diagonal of the subalgebra is a Cartan subalgebra of the von Neumann algebra. In addition, given any separably acting type ${\text {II}_1}$ factor $\mathcal {M}$, we explicitly compute ${K_0}$ of those triangular subalgebras $\mathcal {T}$ of $\mathcal {M}$ that have the property that there exists a UHF subalgebra $\mathcal {A}$ of $\mathcal {M}$ and a standard triangular UHF algebra $\mathcal {S}$ in $\mathcal {A}$ such that $\mathcal {A}$ is $\sigma$-weakly dense in $\mathcal {M}$ and $\mathcal {T}$ is the $\sigma$-weak closure of $\mathcal {S}$.References
- William B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578β642. MR 223899, DOI 10.2307/2373237
- Richard Baker, A certain class of triangular algebras in type $\textrm {II}_1$ hyperfinite factors, Proc. Amer. Math. Soc. 112 (1991), no.Β 1, 163β169. MR 1049840, DOI 10.1090/S0002-9939-1991-1049840-3
- Jacques Dixmier, von Neumann algebras, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance; Translated from the second French edition by F. Jellett. MR 641217
- Paul S. Muhly, Kichi-Suke Saito, and Baruch Solel, Coordinates for triangular operator algebras, Ann. of Math. (2) 127 (1988), no.Β 2, 245β278. MR 932297, DOI 10.2307/2007053
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716β808. MR 9096, DOI 10.2307/1969107 D. R. Pitts, On the ${K_0}$ groups of nest algebras, preprint.
- David R. Pitts, Factorization problems for nests: factorization methods and characterizations of the universal factorization property, J. Funct. Anal. 79 (1988), no.Β 1, 57β90. MR 950084, DOI 10.1016/0022-1236(88)90030-4
- J. R. Peters and B. H. Wagner, Triangular AF algebras and nest subalgebras of UHF algebras, J. Operator Theory 25 (1991), no.Β 1, 79β123. MR 1191255
- Chao Xin Qiu, $K$-theory of analytic crossed products, Rocky Mountain J. Math. 22 (1992), no.Β 4, 1545β1557. MR 1201109, DOI 10.1216/rmjm/1181072672
- Jun Tomiyama, On the product projection of norm one in the direct product of operator algebras, Tohoku Math. J. (2) 11 (1959), 305β313. MR 108739, DOI 10.2748/tmj/1178244589
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 13-19
- MSC: Primary 46L80; Secondary 19A49
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093591-7
- MathSciNet review: 1093591