## $K_ 0$ of certain subdiagonal subalgebras of von Neumann algebras

HTML articles powered by AMS MathViewer

- by Richard Baker
- Proc. Amer. Math. Soc.
**116**(1992), 13-19 - DOI: https://doi.org/10.1090/S0002-9939-1992-1093591-7
- PDF | Request permission

## Abstract:

We show that ${K_0}$ of any finite maximal subdiagonal subalgebra of a separably acting finite von Neumann algebra is isomorphic to ${K_0}$ of the diagonal of the subalgebra. It results that ${K_0}$ of any finite, $\sigma$-weakly closed, maximal triangular subalgebra of a separably acting finite von Neumann algebra is isomorphic to ${K_0}$ of the diagonal of the subalgebra, provided that the diagonal of the subalgebra is a Cartan subalgebra of the von Neumann algebra. In addition, given any separably acting type ${\text {II}_1}$ factor $\mathcal {M}$, we explicitly compute ${K_0}$ of those triangular subalgebras $\mathcal {T}$ of $\mathcal {M}$ that have the property that there exists a UHF subalgebra $\mathcal {A}$ of $\mathcal {M}$ and a standard triangular UHF algebra $\mathcal {S}$ in $\mathcal {A}$ such that $\mathcal {A}$ is $\sigma$-weakly dense in $\mathcal {M}$ and $\mathcal {T}$ is the $\sigma$-weak closure of $\mathcal {S}$.## References

- William B. Arveson,
*Analyticity in operator algebras*, Amer. J. Math.**89**(1967), 578β642. MR**223899**, DOI 10.2307/2373237 - Richard Baker,
*A certain class of triangular algebras in type $\textrm {II}_1$ hyperfinite factors*, Proc. Amer. Math. Soc.**112**(1991), no.Β 1, 163β169. MR**1049840**, DOI 10.1090/S0002-9939-1991-1049840-3 - Jacques Dixmier,
*von Neumann algebras*, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance; Translated from the second French edition by F. Jellett. MR**641217** - Paul S. Muhly, Kichi-Suke Saito, and Baruch Solel,
*Coordinates for triangular operator algebras*, Ann. of Math. (2)**127**(1988), no.Β 2, 245β278. MR**932297**, DOI 10.2307/2007053 - F. J. Murray and J. von Neumann,
*On rings of operators. IV*, Ann. of Math. (2)**44**(1943), 716β808. MR**9096**, DOI 10.2307/1969107
D. R. Pitts, - David R. Pitts,
*Factorization problems for nests: factorization methods and characterizations of the universal factorization property*, J. Funct. Anal.**79**(1988), no.Β 1, 57β90. MR**950084**, DOI 10.1016/0022-1236(88)90030-4 - J. R. Peters and B. H. Wagner,
*Triangular AF algebras and nest subalgebras of UHF algebras*, J. Operator Theory**25**(1991), no.Β 1, 79β123. MR**1191255** - Chao Xin Qiu,
*$K$-theory of analytic crossed products*, Rocky Mountain J. Math.**22**(1992), no.Β 4, 1545β1557. MR**1201109**, DOI 10.1216/rmjm/1181072672 - Jun Tomiyama,
*On the product projection of norm one in the direct product of operator algebras*, Tohoku Math. J. (2)**11**(1959), 305β313. MR**108739**, DOI 10.2748/tmj/1178244589

*On the*${K_0}$

*groups of nest algebras*, preprint.

## Bibliographic Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**116**(1992), 13-19 - MSC: Primary 46L80; Secondary 19A49
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093591-7
- MathSciNet review: 1093591