On the cup product for groups
HTML articles powered by AMS MathViewer
- by M. N. Dyer, J. V. Leahy and L. J. Mooney
- Proc. Amer. Math. Soc. 116 (1992), 219-227
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093596-6
- PDF | Request permission
Abstract:
For $G$ any group and trivial coefficients in $R$, a commutative ring, the authors analyze the kernel of the cup product $\cup :{H^1}\left ( {G,R} \right ) \otimes {H^1}\left ( {G,R} \right ) \to {H^2}\left ( {G,R} \right )$ by splicing it together with part of the six-term Hom-Ext exact sequence obtained from $0 \to {I^2}/{I^3} \to I/{I^3} \to I/{I^2} \to 0$.References
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Kuo-tsai Chen, Algebras of iterated path integrals and fundamental groups, Trans. Amer. Math. Soc. 156 (1971), 359–379. MR 275312, DOI 10.1090/S0002-9947-1971-0275312-1 M. Dyer, Cofiltrations in the cohomology of groups, manuscript, 1988.
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025
- Jonathan A. Hillman, The kernel of the cup product, Bull. Austral. Math. Soc. 32 (1985), no. 2, 261–274. MR 815368, DOI 10.1017/S0004972700009941
- Jonathan A. Hillman, The kernel of integral cup product, J. Austral. Math. Soc. Ser. A 43 (1987), no. 1, 10–15. MR 886797
- Ralph Strebel, A note on groups with torsion-free abelianization and trivial multiplicator, Comment. Math. Helv. 54 (1979), no. 1, 147–158. MR 522038, DOI 10.1007/BF02566263
- John C. Wood, A theorem on injectivity of the cup product, Proc. Amer. Math. Soc. 37 (1973), 301–304. MR 307239, DOI 10.1090/S0002-9939-1973-0307239-8
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 219-227
- MSC: Primary 20J99; Secondary 18G15, 55N45, 55U20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1093596-6
- MathSciNet review: 1093596