Linear combinations of projections in von Neumann algebras
HTML articles powered by AMS MathViewer
- by Stanisław Goldstein and Adam Paszkiewicz
- Proc. Amer. Math. Soc. 116 (1992), 175-183
- DOI: https://doi.org/10.1090/S0002-9939-1992-1094501-9
- PDF | Request permission
Abstract:
Any operator in a von Neumann algebra is a linear combination of a finite number of projections from the algebra with coefficients from the center of the algebra. Those von Neumann algebras that are the complex linear span of their projections are identified.References
- Don Deckard and Carl Pearcy, On matrices over the ring of continuous complex valued functions on a Stonian space, Proc. Amer. Math. Soc. 14 (1963), 322–328. MR 147926, DOI 10.1090/S0002-9939-1963-0147926-1
- Th. Fack and P. de la Harpe, Sommes de commutateurs dans les algèbres de von Neumann finies continues, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 3, 49–73 (French). MR 597017
- P. A. Fillmore and D. M. Topping, Operator algebras generated by projections, Duke Math. J. 34 (1967), 333–336. MR 209855
- Adam Paszkiewicz, Any selfadjoint operator is a finite linear combination of projectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 7-8, 337–345 (1981) (English, with Russian summary). MR 628049 —, Self-adjoint operators as a real span of 4 projections, Math. Japon, (to appear).
- Carl Pearcy and David Topping, Commutators and certain $\textrm {II}_{1}$-factors, J. Functional Analysis 3 (1969), 69–78. MR 0239432, DOI 10.1016/0022-1236(69)90051-2
- Carl Pearcy and David Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453–465. MR 218922
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 175-183
- MSC: Primary 46L10; Secondary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1094501-9
- MathSciNet review: 1094501