Saeki’s improvement of the Vitali-Hahn-Saks-Nikodým theorem holds precisely for Banach spaces having cotype
HTML articles powered by AMS MathViewer
- by Paul Abraham
- Proc. Amer. Math. Soc. 116 (1992), 171-173
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095219-9
- PDF | Request permission
Abstract:
We prove that a Banach space $X$ has nontrivial cotype if and only if given any $\sigma$-field $\Sigma$ and any sequence ${\mu _n}:\Sigma \to X$ of strongly additive vector measures such that for some $\gamma \geq 1,\lim {\sup _{n \to \infty }}\left \| {{\mu _n}\left ( E \right )} \right \| \leq \gamma \lim {\inf _{n \to \infty }}\left \| {{\mu _n}\left ( E \right )} \right \| < \infty$ for each $E \in \Sigma$ then $\left \{ {{\mu _n}:n \in \mathbb {N}} \right \}$ is uniformly strongly additive.References
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- Sadahiro Saeki, The Vitali-Hahn-Saks theorem and measuroids, Proc. Amer. Math. Soc. 114 (1992), no. 3, 775–782. MR 1088446, DOI 10.1090/S0002-9939-1992-1088446-8
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 171-173
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095219-9
- MathSciNet review: 1095219