DEFEAT OF THE FP^2F CONJECTURE: HUCKABA'S EXAMPLE

CARL FAITH

(Communicated by Louis J. Ratliff, Jr.)

Abstract. A commutative ring R is FP^2F (resp. FPF) provided that all finitely presented (resp. finitely generated) faithful modules generate the category mod-R of all R-modules. A conjecture of the author dating to the middle 1970s states that any FP^2F ring R has FP-injective classical quotient ring $Q = Q_{cl}(R)$. It was shown by the author (Injective quotient rings. II, Lecture Notes in Pure and Appl. Math., vol. 72, Dekker, New York, 1982, pp. 71-105) that FPF rings R have injective Q and by the author and P. Pillay (Classification of commutative FPF rings, Notas Math., vol. 4, Univ. de Murcia, Murcia, Spain, 1990) that CP^2F local rings (defined below) have FP-injective Q.

The counterexample is a difficult example due to Huckaba of a strongly Prüfer ring without "Property A." (A ring with Property A was labelled a McCoy ring by the author.)

This counterexample is CP^2F in the sense that every factor ring of R is FP^2F.

1. Theorem. (1) A ring R is CP^2F iff (2) R_M is a valuation ring ($= VR$) for each maximal ideal M.

Proof. In [Fl] (also [FP]) CP^2F is characterized by the statement: R is locally a VR, i.e., R_P is a VR for all prime ideals P. However, a look at the proof in [Fl, Corollary 5E, p. 176] establishes the equivalence of (1) and (2).

A ring R is said to be McCoy (see [F2]) or have Property A (see [H]) provided that every finitely generated dense (= faithful) ideal is regular, i.e., contains a regular element. This is equivalent to the statement that $Q = Q_{cl}(R)$ is McCoy, i.e., that Q is the only finitely generated dense ideal. A sufficient condition for R to be McCoy is for Q to be FP-injective.

Every FP-injective ring Q has the property that finitely generated ideals are annihilator ideals.

A ring R is Prüfer if every finitely generated regular ideal is invertible (see [H, p. 29]), equivalently projective. A ring R is strongly Prüfer iff every finitely generated dense ideal is locally principal [H, p. 115].

Huckaba's example. There exists a strongly Prüfer ring R with the properties that R is not McCoy; hence $Q = Q_{cl}(R)$ is not FP-injective, but R_M is a VR, in fact a domain ($= VD$), for all maximal ideals. (See [H, Example 17, p. 191].)
This provides the counterexample to the $FP^2 F$ conjecture since R is $CFP^2 F$ by Theorem 1, yet Q is not FP-injective.

We also remark the following:

Theorem (Huckaba and Keller). A reduced coherent ring R is McCoy iff Q is VNR ($= \text{von Neumann regular}$).

Proof. See [H, Theorem 4.7, p. 20].

REFERENCES

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903

Current address: 199 Longview Drive, Princeton, New Jersey 08540