Density points and bi-Lipschitz functions in $\textbf {R}^ m$
HTML articles powered by AMS MathViewer
- by Zoltán Buczolich
- Proc. Amer. Math. Soc. 116 (1992), 53-59
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100645-5
- PDF | Request permission
Abstract:
If $A,B \subset {{\mathbf {R}}^m}$ and $f$ is a bi-Lipschitz function mapping $A$ onto $B$ then density or dispersion points of $A$ are mapped exactly onto density or dispersion points of $B$, respectively.References
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 53-59
- MSC: Primary 26B35; Secondary 54C30
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100645-5
- MathSciNet review: 1100645