A counter example to a conjecture of Johns
HTML articles powered by AMS MathViewer
- by Carl Faith and Pere Menal
- Proc. Amer. Math. Soc. 116 (1992), 21-26
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100651-0
- PDF | Request permission
Abstract:
In this paper, we construct a counter example to a conjecture of Johns to the effect that a right Noetherian ring in which every right ideal is an annihilator is right Artinian. Our example requires the existence of a right Noetherian domain $A$ (not a field) with a unique simple right module $W$ such that ${W_A}$ is injective and $A$ embeds in the endomorphism ring $\operatorname {End} ({W_A})$. Then the counter example is the trivial extension $R = A \ltimes W$ of $A$ and $W$. The ring $A$ exists by a theorem of Resco using a theorem of Cohn. Specifically, if $D$ is any countable existentially closed field with center $k$, then the right and left principal ideal domain defined by $A = D{ \otimes _k}k(x)$, where $k(x)$ is the field of rational functions, has the desired properties, with ${W_A} \approx {D_A}$.References
- Jan-Erik Björk, Rings satisfying certain chain conditions, J. Reine Angew. Math. 245 (1970), 63–73. MR 277562, DOI 10.1515/crll.1970.245.63
- Paul Moritz Cohn, Skew field constructions, London Mathematical Society Lecture Note Series, No. 27, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0463237
- John H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75–79. MR 258886, DOI 10.1090/S0002-9904-1970-12370-9
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349
- Stephen M. Ginn, A counter-example to a theorem of Kurshan, J. Algebra 40 (1976), no. 1, 105–106. MR 412229, DOI 10.1016/0021-8693(76)90090-9
- S. M. Ginn and P. B. Moss, Finitely embedded modules over Noetherian rings, Bull. Amer. Math. Soc. 81 (1975), 709–710. MR 369424, DOI 10.1090/S0002-9904-1975-13831-6
- Baxter Johns, Annihilator conditions in Noetherian rings, J. Algebra 49 (1977), no. 1, 222–224. MR 453808, DOI 10.1016/0021-8693(77)90282-4
- R. P. Kurshan, Rings whose cyclic modules have finitely generated socle, J. Algebra 15 (1970), 376–386. MR 260780, DOI 10.1016/0021-8693(70)90066-9
- B. L. Osofsky, On twisted polynomial rings, J. Algebra 18 (1971), 597–607. MR 280521, DOI 10.1016/0021-8693(71)90142-6
- Richard Resco, Division rings and $V$-domains, Proc. Amer. Math. Soc. 99 (1987), no. 3, 427–431. MR 875375, DOI 10.1090/S0002-9939-1987-0875375-3
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 21-26
- MSC: Primary 16P40; Secondary 16P50
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100651-0
- MathSciNet review: 1100651