Remarks on a multiplier conjecture for univalent functions
HTML articles powered by AMS MathViewer
- by Richard Fournier and Stephan Ruscheweyh
- Proc. Amer. Math. Soc. 116 (1992), 35-43
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101983-2
- PDF | Request permission
Abstract:
In this paper we study some aspects of a conjecture on the convolution of univalent functions in the unit disk $\mathbb {D}$, which was recently proposed by Grünberg, Rønning, and Ruscheweyh (Trans. Amer. Math. Soc. 322 (1990), 377-393) and is as follows: let $\mathcal {D}: = \{ f{\text { analytic in }}\mathbb {D}:\left | {f''(z)} \right | \leq \operatorname {Re} f’(z),z \in \mathbb {D}\}$ and $g,h \in \mathcal {S}$ (the class of normalized univalent functions in $\mathbb {D}$. Then $\operatorname {Re} (f*g*h)(z)/z > 0$ in $\mathbb {D}$. We discuss several special cases, which lead to interesting, more specific statements about functions in $\mathcal {S}$, determine certain extreme points of $\mathcal {D}$, and note that the former conjectures of Bieberbach and Sheil-Small are contained in this one. It is an interesting matter of fact that the functions in $\mathcal {D}$, which are "responsible" for the Bieberbach coefficient estimates are not extreme points in $\mathcal {D}$.References
- Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137–152. MR 772434, DOI 10.1007/BF02392821
- V. Gruenberg, F. Rønning, and St. Ruscheweyh, On a multiplier conjecture for univalent functions, Trans. Amer. Math. Soc. 322 (1990), no. 1, 377–393. MR 991960, DOI 10.1090/S0002-9947-1990-0991960-7 H. Grunsky, Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche, Sehr. Math. Inst. u. Inst. Angew. Math. Univ. Berlin 1 (1932), 95-140.
- W. K. Hayman, The asymptotic behaviour of $p$-valent functions, Proc. London Math. Soc. (3) 5 (1955), 257–284. MR 71536, DOI 10.1112/plms/s3-5.3.257
- I. S. Jack, Functions starlike and convex of order $\alpha$, J. London Math. Soc. (2) 3 (1971), 469–474. MR 281897, DOI 10.1112/jlms/s2-3.3.469
- Stephan Ruscheweyh, Extension of Szegő’s theorem on the sections of univalent functions, SIAM J. Math. Anal. 19 (1988), no. 6, 1442–1449. MR 965264, DOI 10.1137/0519107
- T. Sheil-Small, On the convolution of analytic functions, J. Reine Angew. Math. 258 (1973), 137–152. MR 320761, DOI 10.1515/crll.1973.258.137
- Karl-Joachim Wirths, A note on $\textrm {Re}(f(z)/z)$ for univalent functions, J. Indian Math. Soc. (N.S.) 54 (1989), no. 1-4, 121–123. MR 1069263
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 35-43
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1992-1101983-2
- MathSciNet review: 1101983