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zc-HYPONORMALITY OF WEIGHTED SHIFTS

SCOTT McCULLOUGH AND VERN PAULSEN

(Communicated by Theodore W. Gamelin)

Abstract. An operator T is defined to be fc-hyponormal if the operator ma-

trix ([T*J , T'])k ._, is positive, where [A , B] = AB - BA . In A note on joint

hyponormality, Proc. Amer. Math. Soc. 107 (1989), 187-195, we proved that

£-hyponormality is equivalent to a Bram-type condition, namely, that the oper-

ator matrix (T*JT')k =0 is positive. In this note we prove that for weighted

shifts, fe-hyponormality is equivalent to an Embry-type condition, namely, that

the operator matrix <T*'+JT**i)k is positive. We give an example to show

that this latter condition fails even for a rank one perturbation of a weighted

shift. For weighted shifts this Embry condition reduces to the positivity of a

sequence of (k + 1) x (k + 1) Hankel matrices and we use this reduction to

give a new proof of one of the principal results of Curto.

1. Introduction

An operator F is hyponormal if the commutator [T*, T] = T*T - TT* is

positive and polynomially hyponormal if every polynomial in F is hyponormal,

i.e., if every finite linear combination of the powers of T is hyponormal. An

operator is subnormal if it is the restriction of a normal operator to an invariant

subspace.
Every subnormal operator is polynomially hyponormal and an old problem

in operator theory is to determine whether the converse is true. Recent research

on this problem has led many authors [ 1, 4-6] to consider conditions that fall

in between hyponormality and subnormality.

A result of Bram [2] asserts that an operator F is subnormal if and only if

the operator matrices ([T*J, T'])k =, are positive for all k . An operator is

k-hyponormal if the above operator matrix is positive for some fixed integer k .

Thus, Bram's result is that F is subnormal if and only if T is zc-hyponormal

for every k . An equivalent definition of zc-hyponormality is to require that the

operator matrix (T*jT')k =0 be positive [9].

There is a second characterization of subnormality due to Embry [8]. Em-

bry's condition states that an operator is subnormal if and only if the operator

matrices (T*'+JT'+j)k ,=0 are positive for every k . It is natural to expect some

relation between the (k + 1 ) x (k + 1 ) Embry and Bram conditions. By pre- and
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post-multiplying (T*JT')k J=0 by a diagonal operator matrix whose diagonal

entries are powers of F, it is easily seen that positivity of (T*JT')k j=0 implies

positivity of (T*l+JT'+J)k =0 . Moreover, if T is invertible, then by using the

inverse of this diagonal we see that the positivity of these two operator matrices

is equivalent.

We give an example that shows positivity of these two operator matrices

is not equivalent for noninvertible T. However, we prove that for weighted

shifts the positivity of these two operator matrices is equivalent. Thus,

zc-hyponormality of a weighted shift is equivalent to the positivity of the

(zc + 1) x (k + 1) operator matrix (T*i+JT'+j)k j=0 each of whose entries is

itself a (infinite) diagonal matrix. The positivity of such an operator reduces to

the positivity of an infinite sequence of scalar (zc + 1 ) x (k + 1 ) Hankel matrices.

These facts allow us to give new proofs of some of Curto's results [6], which

avoid the use of Constantinescu results [3].

There is a second reason that we believe this further simplification of the

weighted shift case is important. In [9] we proved that if there exists a polyno-

mially hyponormal operator that is not subnormal, then necessarily there exists

a weighted shift with this property. Thus, it is sufficient to restrict our attention

to weighted shifts in any analysis of this problem.

2. The Bram and Embry conditions

As we noted in the introduction, positivity of (T*jT')k J=0 always implies

positivity of (T*'+JT'+J)k j=0 and the converse is true for invertible T. In

this section we prove the converse is true for unilateral weighted shifts and give

an example to show that it is not true in general. We then apply this Embry

condition to give a fairly simple criteria for /c-hyponormality of weighted shifts

that we use to rederive an essential result of Curto, from which many of his

other results follow. We begin with an example.

Example 2.1. Let T — S + E22 where S is the unilateral shift with weight

sequence {an} satisfying ao = 1, ax — y/2, and an — 2 for all zz > 2 and

where F22 is the matrix with 1 in the (2, 2) entry and 0 elsewhere. We shall

prove that ( lT AfT) is not positive, but that ( TlT Áf¡^.2 ) is positive.

To see that the first operator matrix is not positive, we first need to compute

F* F. We find that T* T is the direct sum of the 2x2 matrix (\\) with a

diagonal matrix all of whose diagonal entries are 4.

Thus if we compress ( lT J" ) to the six-dimensional space spanned by the

first three basis vectors in each copy of the space, i.e., the linear span of ex © 0,

e2 © 0, ey © 0 and 0 © ex , 0 © e2, 0 © e3, we obtain the matrix

(I 0     0   0    1 0 \
0 1     0   0    1 V2
0 0     10   0 0
0 0     0    11 0
1 10    13 0

VO V2   0   0   0 4 /

A straightforward computation shows that this matrix has determinant -2 and

so is not positive.
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We must now show that the second operator matrix is positive. For this

verification we compute T*2T2, which we find is the direct sum of the 2x2

matrix ( 3 ,3, ) with a diagonal matrix all of whose diagonal entries are 16. Thus,

to check the positivity of

T*T    t*^T2

it suffices to verify that the 4x4 matrix

and the 2x2 matrix ( \ j46 ) are positive.

The 2x2 matrix is easily seen to be positive.   The 4x4 matrix is also

positive since it is equal to U* U where

U

This final computation shows that the example has the advertised properties.

We are now prepared to prove our main theorem.

Theorem 2.2. Let T be a unilateral weighted shift with nonzero weight sequence.

Then, for each k, the operator matrix iT*jT')k J=0  is positive if and only if

{T*i+J Ti+J)l J=0 is positive.

Proof. From our earlier remarks, it will be sufficient to prove that positivity of

the latter matrix implies positivity of the former matrix. We regard the weighted

shift as acting on the Hubert space l2, so that each of the operator matrices

acts upon H = lk+l . Let {en}(f=l be the canonical orthonormal basis for l2 so

that Te„ = a„en+x for some sequence of scalars {an} . Set A = {T*JTl)k J=0 ,

B = iT*i+JTi+J)kj=0 . Let Jf = /2©F/2©- • -®Tkl2, so that for m = /z0©77z, ©

••• © Tkhk in Jf we have (Am, m) = J2^,j=x(^*JTiTJhj, Phi) = (Bh, h)
where h = ho © hx © • • • © hk . By hypothesis (Bh, h) > 0, and hence the
compression of A to ^# is positive. Since A is selfadjoint and Jif is invariant

for A, JÍ reduces A. Therefore, the proof will be complete once we show

that the compression of A to the finite-dimensional space ¿fá1- is also positive.

To this end note that ^#-L = 0 © J?î © • • • © -2¿ where -2y is the span of

{en}jn=x ■ Let ej„ = 0 © • • • © 0 © e„ © 0 © • • • © 0, where the en is in the

y'th space. Thus e¡n, 1 < zz, j < k, is an orthonormal basis of ^#x . For

convenience in notation, we set ejn = 0 for n < 0. We let 3£\ denote the

span of e¡x, e¡2, ... , eik+\-i for I — 2, ... , k . Thus e¡ ¡n is in ^/ if and

only if j — n — I — 1. It is easily seen that 3% _l_ 3¡f¡ for z / j and that

JfL = 3T2 © • • • ®A%k . Note also that since T*jT'eJtn is a multiple of eitn+i-j
and j — n — i - (n + i — j) we have each space 3¡f¡ is invariant for A, and

hence reduces A.
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Finally, note that each vector h in 3ff¡ has the form 0 © • • • © 0 © c¡+xex ©

■ • • ©ckTk~lex for some scalars c¡, ... , ck . Thus

k

(Ah,h) = Y (T^rCjTJ-'ex, cATj-'ex)
i,j=l

k

= Y cjC-,(T^+i-»r+-lex,ex)
<J=i

k-i

—   ¿^  cm+2Cn+i\I i       ex, ex).

m, n—0

This last term is seen to be positive since it is (Bhx ,hx) where hx — c¡ex © • • • ©

ckex © 0 © • • • © 0.
Thus A  compressed to each space at¡  is positive from which the result

follows.   G

Using the above theorem it is now easy to obtain a result of Curto's.

Corollary 2.3 (Curto [6, Theorem 4]). Let T be a unilateral weighted shift with

weight sequence {an}f)=l and let b„ = |ai--a„|2 with bo = 1. Then T is

k-hyponormal if and only if each of the (k + 1) x (k + 1) Hankel matrices

(bi+j+n)k j=0 is positive for every « > 0.

Proof. Note that T*l+jTl+j is a diagonal operator whose zz th diagonal entry is

bj+j+n/bn. Thus the operator matrix (T*l+JT'+J)k j=Q is positive if and only if

the scalar matrix (b¡+j+n)k =0 is positive for every zz.    D

As a final remark, we note that, following the proof of Theorem 2.2, it is easily

seen that if F is an operator with (T*'+JTi+j)k j=0 positive, then (T*jT')k j=0

restricted to the subspace Jf = 0 © R(T) © ••• © R(Tk), where R(S) de-

notes the closure of the range of S, is positive. Moreover, ^# is invariant

for (T*jT')k J=0 and hence reducing, so that the positivity or nonpositivity of

(T*JT')k =0 is determined by its behavior on ^#-L .
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