On the reflexivity of operators on function spaces
HTML articles powered by AMS MathViewer
- by K. Seddighi and B. Yousefi
- Proc. Amer. Math. Soc. 116 (1992), 45-52
- DOI: https://doi.org/10.1090/S0002-9939-1992-1104402-5
- PDF | Request permission
Abstract:
Let $\Omega$ be a bounded plane domain. Sufficient conditions are given so that an operator $T$ in the Cowen-Douglas class ${\mathcal {B}_n}(\Omega )$ is reflexive. The operator ${M_z}$ of multiplication by $z$ on a Hilbert space of functions analytic on a finitely connected domain $\Omega$ is shown to be reflexive whenever $\sigma ({M_z}) = \overline \Omega$ is a spectral set.References
- H. Bercovici, C. Foiaş, J. Langsam, and C. Pearcy, (BCP)-operators are reflexive, Michigan Math. J. 29 (1982), no. 3, 371–379. MR 674290
- B. Chevreau, C. M. Pearcy, and A. L. Shields, Finitely connected domains $G$, representations of $H^{\infty }(G)$, and invariant subspaces, J. Operator Theory 6 (1981), no. 2, 375–405. MR 643698
- M. J. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math. 141 (1978), no. 3-4, 187–261. MR 501368, DOI 10.1007/BF02545748
- Raúl E. Curto and Norberto Salinas, Generalized Bergman kernels and the Cowen-Douglas theory, Amer. J. Math. 106 (1984), no. 2, 447–488. MR 737780, DOI 10.2307/2374310
- James A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509–512. MR 278099, DOI 10.1090/S0002-9939-1971-0278099-7
- J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89–93. MR 358390, DOI 10.1016/0024-3795(75)90099-3 T. Gamelin, Uniform algebras, Chelsea, New York, 1984.
- D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511–517. MR 192365
- Karim Seddighi, Essential spectra of operators in the class ${\cal B}_{n}(\Omega )$, Proc. Amer. Math. Soc. 87 (1983), no. 3, 453–458. MR 684638, DOI 10.1090/S0002-9939-1983-0684638-2
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
- A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/71), 777–788. MR 287352, DOI 10.1512/iumj.1971.20.20062
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 45-52
- MSC: Primary 47B38; Secondary 47A15, 47B37
- DOI: https://doi.org/10.1090/S0002-9939-1992-1104402-5
- MathSciNet review: 1104402