One radius theorem for the eigenfunctions of the invariant Laplacian
HTML articles powered by AMS MathViewer
- by E. G. Kwon
- Proc. Amer. Math. Soc. 116 (1992), 27-34
- DOI: https://doi.org/10.1090/S0002-9939-1992-1113644-4
- PDF | Request permission
Abstract:
Let $B$ be the open unit ball in ${{\mathbf {C}}^n}$ with its boundary $S$. Suppose that $\alpha \geq \tfrac {1}{2}$ and $u(z) = {(1 - {\left | z \right |^2})^{n(1 - \alpha )}}F(z)$ for some $F(z) \in C(\overline B )$. If for every $z \in B$ there corresponds an $r(z):0 < r(z) < 1$ and an automorphism ${\psi _z}$ with ${\psi _z}(0) = z$ such that \[ u(z) = \frac {1}{{{g_\alpha }(r(z))}}\int _S {u \circ {\psi _z}(r(z)\zeta )d\sigma (\zeta )} ,\] then $\tilde \Delta u(z) = - 4{n^2}\alpha (1 - \alpha )u(z),z \in B$. Here $\tilde \Delta$ is the invariant Laplacian and ${g_\alpha }(r)$ is the hypergeometric function $F(n - n\alpha ,n - n\alpha ,n;{r^2})$.References
- K. Izuchi, The one-radius theorem is not true for bounded real-analytic functions, Proc. Amer. Math. Soc. 103 (1988), no. 3, 823–830. MR 947666, DOI 10.1090/S0002-9939-1988-0947666-X
- Oliver D. Kellogg, Converses of Gauss’ theorem on the arithmetic mean, Trans. Amer. Math. Soc. 36 (1934), no. 2, 227–242. MR 1501739, DOI 10.1090/S0002-9947-1934-1501739-0
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 27-34
- MSC: Primary 35P05; Secondary 35J05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1113644-4
- MathSciNet review: 1113644