On the Cartesian products of Lindelöf spaces with one factor hereditarily Lindelöf
HTML articles powered by AMS MathViewer
- by K. Alster
- Proc. Amer. Math. Soc. 116 (1992), 207-212
- DOI: https://doi.org/10.1090/S0002-9939-1992-1118084-X
- PDF | Request permission
Abstract:
E. Michael asked the following question: Is there a space $X$ such that $Y \times X$ is Lindelöf for every hereditarily Lindelöf space $Y$ but ${X^2}$ is not. The aim of this paper is to present a construction that provides such an example.References
- K. Alster, A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf, Fund. Math. 114 (1981), no. 3, 173–181. MR 644402, DOI 10.4064/fm-114-3-173-181
- K. Alster, A note on Michael’s problem concerning the Lindelöf property in the Cartesian products, Trans. Amer. Math. Soc. 278 (1983), no. 1, 369–375. MR 697081, DOI 10.1090/S0002-9947-1983-0697081-1
- K. Alster, On Michael’s problem concerning the Lindelöf property in the Cartesian products, Fund. Math. 121 (1984), no. 2, 149–167. MR 765331, DOI 10.4064/fm-121-2-149-167
- K. Alster, On a question of Archangelskij concerning Lindelöf spaces with countable pseudocharacter, Proc. Amer. Math. Soc. 95 (1985), no. 2, 320–322. MR 801347, DOI 10.1090/S0002-9939-1985-0801347-9
- Kazimierz Alster, On spaces whose product with every Lindelöf space is Lindelöf, Colloq. Math. 54 (1987), no. 2, 171–178. MR 948511, DOI 10.4064/cm-54-2-171-178
- K. Alster, On the class of all spaces of weight not greater than $\omega _1$ whose Cartesian product with every Lindelöf space is Lindelöf, Fund. Math. 129 (1988), no. 2, 133–140. MR 959437, DOI 10.4064/fm-129-2-133-140
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Thomas J. Jech, Lectures in set theory, with particular emphasis on the method of forcing, Lecture Notes in Mathematics, Vol. 217, Springer-Verlag, Berlin-New York, 1971. MR 0321738, DOI 10.1007/BFb0061131
- S. Todorčević, On the Lindelöf property of Aronszajn trees, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 577–588. MR 952640
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 207-212
- MSC: Primary 54B10; Secondary 54D20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1118084-X
- MathSciNet review: 1118084