Riesz decomposition property implies asymptotic periodicity of positive and constrictive operators
HTML articles powered by AMS MathViewer
- by Wojciech Bartoszek
- Proc. Amer. Math. Soc. 116 (1992), 101-111
- DOI: https://doi.org/10.1090/S0002-9939-1992-1123648-3
- PDF | Request permission
Abstract:
Consider a linear and positive operator ${\mathbf {T}}$ acting on an ordered, $F$-normed linear space ${\mathbf {X}}$. Assume that there exists an open neighborhood ${\mathbf {U}} \ni {\mathbf {0}}$ such that the trajectory $\left \{ {{{\mathbf {T}}^n}({\mathbf {x}})} \right \}$ is attracted to a compact set ${{\mathbf {F}}_{\mathbf {U}}}$ whenever ${\mathbf {x}}$ is taken from ${\mathbf {U}}$ and that the positive cone ${{\mathbf {X}}_ + }$ is closed, proper, and reproducing. It is shown that if $({\mathbf {X}},{{\mathbf {X}}_ + })$ has the Riesz Decomposition Property then ${\mathbf {T}}$ has asymptotically periodic iterates.References
- Wojciech Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), no. 3, 179–188. MR 985720, DOI 10.4064/sm-91-3-179-188
- C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Functional Analysis 13 (1973), 97–106. MR 0346611, DOI 10.1016/0022-1236(73)90069-4
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578
- Jozef Komorník, Asymptotic periodicity of the iterates of weakly constrictive Markov operators, Tohoku Math. J. (2) 38 (1986), no. 1, 15–27. MR 826761, DOI 10.2748/tmj/1178228533
- A. Lasota, T.-Y. Li, and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc. 286 (1984), no. 2, 751–764. MR 760984, DOI 10.1090/S0002-9947-1984-0760984-4 W. A. Luxemburg and A. C. Zaanen, Riesz spaces, vol. I, North-Holland, Amsterdam, 1971.
- M. Miklavčič, Asymptotic periodicity of the iterates of positivity preserving operators, Trans. Amer. Math. Soc. 307 (1988), no. 2, 469–479. MR 940213, DOI 10.1090/S0002-9947-1988-0940213-2
- Stefan Rolewicz, Metric linear spaces, 2nd ed., PWN—Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984. MR 802450
- Vu Kuok Fong, Asymptotic almost periodicity and compactifying representations of semigroups, Ukrain. Mat. Zh. 38 (1986), no. 6, 688–692, 813 (Russian). MR 881957
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 101-111
- MSC: Primary 47B65; Secondary 46B40, 47A35, 47B60
- DOI: https://doi.org/10.1090/S0002-9939-1992-1123648-3
- MathSciNet review: 1123648