Riesz decomposition property implies asymptotic periodicity of positive and constrictive operators
Author:
Wojciech Bartoszek
Journal:
Proc. Amer. Math. Soc. 116 (1992), 101-111
MSC:
Primary 47B65; Secondary 46B40, 47A35, 47B60
DOI:
https://doi.org/10.1090/S0002-9939-1992-1123648-3
MathSciNet review:
1123648
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Consider a linear and positive operator ${\mathbf {T}}$ acting on an ordered, $F$-normed linear space ${\mathbf {X}}$. Assume that there exists an open neighborhood ${\mathbf {U}} \ni {\mathbf {0}}$ such that the trajectory $\left \{ {{{\mathbf {T}}^n}({\mathbf {x}})} \right \}$ is attracted to a compact set ${{\mathbf {F}}_{\mathbf {U}}}$ whenever ${\mathbf {x}}$ is taken from ${\mathbf {U}}$ and that the positive cone ${{\mathbf {X}}_ + }$ is closed, proper, and reproducing. It is shown that if $({\mathbf {X}},{{\mathbf {X}}_ + })$ has the Riesz Decomposition Property then ${\mathbf {T}}$ has asymptotically periodic iterates.
- Wojciech Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), no. 3, 179–188. MR 985720, DOI https://doi.org/10.4064/sm-91-3-179-188
- C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Functional Analysis 13 (1973), 97–106. MR 0346611, DOI https://doi.org/10.1016/0022-1236%2873%2990069-4
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578
- Jozef Komorník, Asymptotic periodicity of the iterates of weakly constrictive Markov operators, Tohoku Math. J. (2) 38 (1986), no. 1, 15–27. MR 826761, DOI https://doi.org/10.2748/tmj/1178228533
- A. Lasota, T.-Y. Li, and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc. 286 (1984), no. 2, 751–764. MR 760984, DOI https://doi.org/10.1090/S0002-9947-1984-0760984-4 W. A. Luxemburg and A. C. Zaanen, Riesz spaces, vol. I, North-Holland, Amsterdam, 1971.
- M. Miklavčič, Asymptotic periodicity of the iterates of positivity preserving operators, Trans. Amer. Math. Soc. 307 (1988), no. 2, 469–479. MR 940213, DOI https://doi.org/10.1090/S0002-9947-1988-0940213-2
- Stefan Rolewicz, Metric linear spaces, 2nd ed., PWN—Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984. MR 802450
- Vu Kuok Fong, Asymptotic almost periodicity and compactifying representations of semigroups, Ukrain. Mat. Zh. 38 (1986), no. 6, 688–692, 813 (Russian). MR 881957
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B65, 46B40, 47A35, 47B60
Retrieve articles in all journals with MSC: 47B65, 46B40, 47A35, 47B60
Additional Information
Keywords:
Asymptotic periodicity,
positive operator,
Riesz Decomposition Property
Article copyright:
© Copyright 1992
American Mathematical Society