Attractors of iterated function systems
HTML articles powered by AMS MathViewer
- by P. F. Duvall and L. S. Husch
- Proc. Amer. Math. Soc. 116 (1992), 279-284
- DOI: https://doi.org/10.1090/S0002-9939-1992-1132850-6
- PDF | Request permission
Abstract:
In this paper, the question of which compact metric spaces can be attractors of hyperbolic iterated function systems on Euclidean space is studied. It is shown that given any finite-dimensional compact metric $X$, there is a Cantor set $C$ such that the disjoint union of $C$ and $X$ is an attractor. In the process, it is proved that every such $X$ is the Lipschitz image of a Cantor set.References
- Michael Barnsley, Fractals everywhere, Academic Press, Inc., Boston, MA, 1988. MR 977274
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Masayoshi Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), no. 2, 381–414. MR 839336, DOI 10.1007/BF03167083
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), no. 1, 85–122. MR 515647, DOI 10.5186/aasfm.1977.0315
- R. F. Williams, Composition of contractions, Bol. Soc. Brasil. Mat. 2 (1971), no. 2, 55–59. MR 367962, DOI 10.1007/BF02584684
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 279-284
- MSC: Primary 54H15; Secondary 54E40, 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1132850-6
- MathSciNet review: 1132850