MAXIMAL DOUGLAS SUBALGEBRAS
AND MINIMAL SUPPORT POINTS

CARROLL GUILLORY AND KEIJI IZUCHI

(Communicated by Paul S. Muhly)

Abstract. Let \(B \) denote a Douglas algebra. Then \(B \) has a maximal Douglas subalgebra if and only if the set of points outside the maximal ideal space of \(B \) has a minimal support point.

1. Introduction

Let \(H^\infty \) be the space of bounded analytic functions on the open unit disc \(D \), and let \(L^\infty \) be the space of bounded measurable functions on the unit circle \(\partial D \) with respect to the Lebesgue measure \(d\theta/2\pi \). Identifying \(H^\infty \) with these boundary functions, we may consider that \(H^\infty \) is an essentially sup-norm closed subalgebra of \(L^\infty \). An essentially sup-norm closed subalgebra \(B \) of \(L^\infty \) containing \(H^\infty \) is called a Douglas algebra. We denote by \(C \) the space of continuous functions on \(\partial D \). Then it is well known that \(H^\infty + C \) is a Douglas algebra and contains \(H^\infty \) as a maximal Douglas subalgebra [10]. Also in [4], Guillory, Izuchi, and Sarason showed that there is a Douglas algebra \(B \) such that \(H^\infty + C \subseteq B \subseteq L^\infty \) and \(B \) has a maximal Douglas subalgebra. On the other hand, Sundberg [11] proved that \(L^\infty \) does not have a maximal Douglas subalgebra. In this paper, we answer to a question when a given Douglas algebra has a maximal Douglas subalgebra.

For a Douglas algebra \(B \), we let \(M(B) \) denote the maximal ideal space of \(B \). A Gelfand transform of \(f \) in \(B \) is denoted by the same symbol \(f \). \(M(B) \) may be identified with a closed subset of \(M(H^\infty) \). Then \(M(L^\infty) \) becomes the Shilov boundary for \(B \) and \(M(H^\infty + C) = M(H^\infty) \setminus D \). For a point \(x \) in \(M(H^\infty) \), we denote by \(\mu_x \) its representing measure on \(M(L^\infty) \), that is, \(f(x) = \int_{M(L^\infty)} f \, d\mu_x \) for every \(f \) in \(H^\infty \). We put

\[
H^\infty_{\text{supp} \mu_x} = \{ f \in L^\infty : f|_{\text{supp} \mu_x} \in H^\infty_{\text{supp} \mu_x} \};
\]

then \(H^\infty_{\text{supp} \mu_x} \) is a Douglas algebra and

\[
M(H^\infty_{\text{supp} \mu_x}) = M(L^\infty) \cup \{ \zeta \in M(H^\infty) : \text{supp} \mu_\zeta \subseteq \text{supp} \mu_x \}.
\]
For a subset \(\Omega \) of \(M(H^\infty) \), a point \(x \) in \(\Omega \) is called a minimal support point for \(\Omega \) if there are no points \(y \) in \(\Omega \) such that \(\text{supp } \mu_y \subseteq \text{supp } \mu_x \). The following is our main theorem.

Theorem 1. Let \(B \) be a Douglas algebra. Then \(B \) has a maximal Douglas subalgebra if and only if \(M(H^\infty) \setminus M(B) \) has a minimal support point. If \(x \) is a minimal support point for \(M(H^\infty) \setminus M(B) \), then \(B \cap H^\infty_{\text{supp } \mu_x} \) is a maximal Douglas subalgebra of \(B \), and every maximal Douglas subalgebra is given by this form.

In §2, we prove Theorem 1. In §3, we give some applications of Theorem 1.

2. Proof of Theorem 1

A function \(\psi \) in \(H^\infty \) with \(|\psi| = 1 \) on \(M(L^\infty) \) is called inner. The famous Chang-Marshall theorem [1,9] says that if \(B \) is a Douglas algebra then \(B \) is generated by \(H^\infty \) and complex conjugates of inner functions \(\psi \in B \) and \(M(B) \) is the set of points \(x \) in \(M(H^\infty) \) such that \(|\psi(x)| = 1 \) for every inner function \(\psi \) with \(\psi \in B \), that is, \(M(B) = \{ x \in M(H^\infty) ; B \mid \text{supp } \psi = H^\infty_{\text{supp } \mu} \} \). We use these facts frequently. To prove our theorem, we need the following unpublished result of Sarason (see [3, Proposition 3.4]).

Lemma 1. Let \(B_1 \) and \(B_2 \) be Douglas algebras. Then \(M(B_1 \cap B_2) = M(B_1) \cup M(B_2) \).

Proof of Theorem 1. Let \(A \) be a maximal Douglas subalgebra of \(B \). Since \(M(B) \subseteq M(A) \), take a point \(x \) in \(M(A) \setminus M(B) \). To prove that \(x \) is a minimal support point for \(M(H^\infty) \setminus M(B) \), suppose not. Then there exists \(y \) in \(M(H^\infty) \setminus M(B) \) such that \(\text{supp } \mu_y \subseteq \text{supp } \mu_x \). Let \(C = B \cap H^\infty_{\text{supp } \mu_x} \). Since \(x \in M(A) \), it follows that \(A \cap \text{supp } \mu_x = H^\infty_{\text{supp } \mu_x} \), so that \(A \cap \text{supp } \mu_y = H^\infty_{\text{supp } \mu_y} \). Therefore we have \(A \subseteq C \subseteq B \). By Lemma 1,

\[
M(C) = M(B) \cup \{ \zeta \in M(H^\infty) ; \text{supp } \mu_\zeta \subseteq \text{supp } \mu_y \}.
\]

Since \(y \in M(C) \) and \(y \notin M(B) \), it follows that \(M(B) \subseteq M(C) \) and \(C \subseteq B \). Since \(x \notin M(C) \) and \(x \in M(A) \), it follows that \(M(C) \subseteq M(A) \) and \(A \subseteq C \). Hence \(A \subseteq C \subseteq B \), contradicting the maximality of \(A \).

Since \(A \subseteq H^\infty_{\text{supp } \mu_x} \), we have \(A \subseteq B \cap H^\infty_{\text{supp } \mu_x} \). Since \(x \notin M(B) \) and \(x \in M(B \cap H^\infty_{\text{supp } \mu_x}) \), it follows that \(B \cap H^\infty_{\text{supp } \mu_x} \subseteq A \). By the maximality of \(A \), we get \(A = B \cap H^\infty_{\text{supp } \mu_x} \).

To show the converse, let \(x \) be a minimal support point for \(M(H^\infty) \setminus M(B) \) and let \(A = B \cap H^\infty_{\text{supp } \mu_x} \). Then \(A \subseteq B \) and \(M(A) = M(B) \cup \{ \zeta \in M(H^\infty) ; \text{supp } \mu_\zeta \subseteq \text{supp } \mu_x \} \). Since \(x \in M(A) \) and \(x \notin M(B) \), we have \(A \subseteq B \). Since \(x \) is a minimal support point for \(M(H^\infty) \setminus M(B) \), if \(\text{supp } \mu_\zeta \subseteq \text{supp } \mu_x \) then \(\zeta \in M(B) \). Hence

\[
M(A) = M(B) \cup \{ \zeta \in M(H^\infty) ; \text{supp } \mu_\zeta = \text{supp } \mu_x \}.
\]

Let \(Y \) be a Douglas algebra such that \(A \subseteq Y \subseteq B \). By Chang-Marshall’s theorem, there is an inner function \(\psi \) such that \(\psi \notin A \) and \(\psi \in Y \subseteq B \). Then \(|\psi| = 1 \) on \(M(B) \) and \(|\psi(x)| < 1 \). Hence \(|\psi| < 1 \) on \(M(A) \setminus M(B) \). Since \(M(B) \subseteq M(Y) \subseteq M(A) \), it follows that \(M(B) = M(Y) \). Consequently \(B = Y \) and this implies that \(A \) is a maximal Douglas subalgebra of \(B \).
Remark. By the above proof, if $A \subseteq B$ then A is a maximal Douglas subalgebra of B if and only if $\text{supp } \mu_x = \text{supp } \mu_y$ for every x, y in $M(A) \setminus M(B)$.

3. Applications

A Blaschke product b with zeros $\{z_n\}_n$ in D is called sparse if

$$\lim_{k \to \infty} \prod_{n : n \neq k} \left| \frac{z_k - z_n}{1 - z_n z_k} \right| = 1.$$

The above condition implies that $\{z_n\}_n$ is interpolating for H^∞, that is, for every bounded sequence $\{a_n\}_n$ there exists f in H^∞ such that $f(z_n) = a_n$ for every n. For every sequence $\{y_n\}_n$ in D with $|y_n| \to 1$, we can find a subsequence that satisfies the sparseness condition. For a function f in H^∞, we put $Z(f) = \{x \in M(H^\infty + C); f(x) = 0\}$. For a subset F of L^∞, we denote by $[F]$ the closed subalgebra of L^∞ generated by F.

Theorem 2. Let ψ be an inner function such that ψ is not continuous on ∂D. Then $[H^\infty, \psi]$ has uncountably many maximal Douglas subalgebras.

Proof. We have $M([H^\infty, \psi]) = \{\zeta \in M(H^\infty + C); |\psi(\zeta)| = 1\}$. For $\zeta \in M(H^\infty) \setminus M([H^\infty, \psi])$, there is a point x in $Z(\psi)$ such that $\text{supp } \mu_x \subseteq \text{supp } \mu_\zeta$. Hence to study minimal support points for $M(H^\infty) \setminus M([H^\infty, \psi])$ is the same as to study minimal support points for $Z(\psi)$, so we concentrate on $Z(\psi)$.

For x, y in $Z(\psi)$, we define the order as follows; $y \leq x$ if $\text{supp } \mu_y \subseteq \text{supp } \mu_x$, and $x = y$ if $\text{supp } \mu_y = \text{supp } \mu_x$. By Hoffman’s unpublished result [7], if $\text{supp } \mu_y \cap \text{supp } \mu_x \neq \emptyset$ then $\text{supp } \mu_y \subseteq \text{supp } \mu_x$ or $\text{supp } \mu_y \supset \text{supp } \mu_x$. Hence $Z(\psi)$ becomes an ordered set. Let $\{x_\alpha\}_{\alpha \in \Lambda}$ be a totally ordered subset of $Z(\psi)$. We denote by F_α the closure of $\{x_\beta; \beta \in \Lambda, \beta \leq \alpha\}$ in $M(H^\infty)$. Then $\{F_\alpha\}_\alpha$ is a family of compact decreasing subsets of $Z(\psi)$. Therefore, there is a point x_0 in $\bigcap_\alpha F_\alpha$, and we have $\text{supp } \mu_{x_0} \subseteq \text{supp } \mu_x$ and $x_0 \leq x_\alpha$. By Zorn’s lemma, $Z(\psi)$ has a minimal element; hence $M(H^\infty) \setminus M([H^\infty, \psi])$ has a minimal support point. By Theorem 1, $[H^\infty, \psi]$ has a maximal Douglas subalgebra.

Let b be a sparse Blaschke product with zeros $\{z_n\}_n$ such that $|\psi(z_n)| \to 0$ $(n \to \infty)$. By [5, p. 205], $Z(b)$ is contained in the closure of $\{z_n\}_n$ in $M(H^\infty)$. Then $Z(b) \subseteq Z(\psi)$. By the second paragraph, for each $\zeta \in Z(b)$ there is a minimal element ζ_0 in $Z(\psi)$ such that $\zeta_0 \leq \zeta$. By Theorem 1, $[H^\infty, \psi]$ has maximal Douglas subalgebras $\{[H^\infty, \psi] \cap H^\infty_{\text{supp } \mu_\lambda}; \zeta \in Z(b)\}$. By [4, p. 5], $\text{supp } \mu_\zeta \cap \text{supp } \mu_\lambda = \emptyset$ for distinct $\zeta, \lambda \in Z(b)$. Since $\text{supp } \mu_{\zeta_0} \subseteq \text{supp } \mu_\zeta$, it follows that $[H^\infty, \psi] \cap H^\infty_{\text{supp } \mu_\zeta} \neq [H^\infty, \psi] \cap H^\infty_{\text{supp } \mu_\lambda}$ for distinct $\zeta, \lambda \in Z(b)$. Since $Z(b)$ is homeomorphic to $\beta N \setminus N$ [5, p. 205] where βN is the Stone-Cech compactification of integers N, we get our assertion.

Theorem 3. Let B be a Douglas algebra with $B \subseteq L^\infty$. Let ψ be an inner function with $\psi \notin B$. Then $[B, \psi]$ has a maximal Douglas subalgebra.

Proof. Let $x \in M(B) \setminus M([B, \psi])$. Then $|\psi(x)| < 1$. By the proof of Theorem 2, there is a minimal support point y for $M(H^\infty) \setminus M([H^\infty, \psi])$ such that $\text{supp } \mu_y \subseteq \text{supp } \mu_x$. To prove that y is a minimal support point for $M(H^\infty) \setminus M([B, \psi])$, suppose that there is a point ζ in $M(H^\infty) \setminus M([B, \psi])$ such that $\text{supp } \mu_\zeta \subseteq \text{supp } \mu_y$. Since $x \in M(B)$, we have $y \in M(B)$, so that...
\(\zeta \in M(B) \). Since \(\zeta \notin M([B, \psi]) \), \(|\psi(\zeta)| < 1 \). This contradicts the minimality of \(y \) for \(M(H^\infty) \setminus M([H^\infty, \psi]) \). Hence \(y \) is a minimal support point. By Theorem 1, we get Theorem 3.

The following theorem shows that there exists a Douglas algebra that does not have any maximal Douglas subalgebras.

Theorem 4. Let \(\{\psi_n\}_{n=1}^{\infty} \) be a sequence of inner functions such that \(\psi_{n+1} = 0 \) on \(\{ \zeta \in M(H^\infty + C) ; |\psi_n(\zeta)| < 1 \} \) for every \(n \). Then \([H^\infty, \psi_n ; n = 1, 2, \ldots] \) does not have a maximal Douglas subalgebra.

Proof. Put \(B = [H^\infty, \psi_n ; n = 1, 2, \ldots] \). Let \(x \in M(H^\infty) \setminus M(B) \). We shall prove that there is a point \(y \) in \(M(H^\infty) \setminus M(B) \) such that \(\text{supp } \mu_y \subseteq \text{supp } \mu_x \). Since \(x \notin M(B) \), it follows that \(|\psi_n(x)| < 1 \) for some \(n \); hence \(\{ \zeta \in M(H^\infty) ; |\psi_n(\zeta)| < 1 \} \) is a nonvoid open subset of \(M(H^\infty) \). But it is not closed in \(M(H^\infty) \). By the Shilov idempotent theorem, there is a function \(g \in H^\infty \) such that \(g^2 = g \) and \(\{ \zeta \in M(H^\infty) ; g(\zeta) = 1 \} = \{ \zeta \in M(H^\infty) ; |\psi_n(\zeta)| = 1 \} \). Since \(g = 1 \) on \(M(L^\infty) \) and \(|\psi_n(x)| \neq 1 \), we have \(0 = g(x) = \int_{M(L^\infty)} g d\mu_x = 1 \); this is impossible.

Take a point \(y \) in the closure of \(\{ \zeta \in M(H^\infty) ; |\psi_n(\zeta)| < 1 \} \) such that \(|\psi_n(y)| = 1 \). Since \(\text{supp } \mu_z \subseteq \text{supp } \mu_x \) for \(z \in M(H^\infty) \) with \(|\psi_n(z)| < 1 \), we have \(\text{supp } \mu_y \subseteq \text{supp } \mu_x \). Since \(\psi_n \) is constant on \(\text{supp } \mu_y \), and \(\psi_n \) is constant on \(\text{supp } \mu_x \), we have \(\text{supp } \mu_y \subseteq \text{supp } \mu_x \). Since \(\psi_{n+1} = 0 \) on \(\{ \zeta \in M(H^\infty + C) ; |\psi_n(\zeta)| < 1 \} \), we have \(\psi_{n+1}(y) = 0 \), so that \(y \notin M(B) \). Hence every point in \(M(H^\infty) \setminus M(B) \) is not a minimal support point for \(M(H^\infty) \setminus M(B) \). By Theorem 1, we get Theorem 4.

Corollary 1. There is a function \(f \) in \(L^\infty \) such that \([H^\infty, f] \) does not have a maximal Douglas subalgebra.

Proof. By [11] there is a sequence of inner functions \(\{\psi_n\}_n \) that satisfy the condition of Theorem 4. Take \(f \) in \(L^\infty \) such that \([H^\infty, f] = [H^\infty, \psi_n ; n = 1, 2, \ldots] \) (see [8, Lemma 2.2]). Then \(f \) satisfies our assertion.

For a Douglas algebra \(B \), a Douglas algebra \(A \) with \(B \subseteq A \) is called a minimal superalgebra of \(B \) if there are no Douglas algebras \(J \) such that \(B \subseteq J \subseteq A \); that is, \(B \) is a maximal Douglas subalgebra of \(A \). If \(A \) is a minimal superalgebra of \(B \), then \(A = [B, \psi] \) for some inner function \(\psi \). The following theorem is a restatement of Theorem 1 and Remark.

Theorem 5. Let \(B \) be a Douglas algebra. Then \(B \) has a minimal superalgebra if and only if there is an inner function \(\psi \), \(\psi \notin B \) such that \(\text{supp } \mu_x = \text{supp } \mu_y \) for every \(x, y \) in \(\{ \zeta \in M(B) ; |\psi(\zeta)| < 1 \} \). Under the above situation, \([B, \psi] \) becomes a minimal superalgebra of \(B \).

Corollary 2. For every function \(f \) in \(L^\infty \) with \(f \notin H^\infty \), \([H^\infty, f] \) does not have any minimal superalgebras.

Proof. Put \(B = [H^\infty, f] \). By [8, Lemma 2.2], there is a sequence of inner functions \(\{\psi_n\}_n \) such that \(B = [H^\infty, \psi_n ; n = 1, 2, \ldots] \). Then \(M(B) \) is a closed \(G_\delta \)-subset of \(M(H^\infty) \). Let \(g \) be a nonnegative continuous function on \(M(H^\infty) \) such that \(g = 1 \) on \(M(B) \) and \(0 \leq g < 1 \) on \(M(H^\infty) \setminus M(B) \). To prove our assertion, let \(\psi \) be an inner function such that \(\psi \notin B \). Then
\[Z(\psi) \cap M(B) \neq \emptyset. \] By the corona theorem (see [2, p. 318]), there is a sequence \(\{z_n\}_n \) in \(D \) such that \(g(z_n) \to 1 \) and \(\psi(z_n) \to 0 \). Let \(b \) be a Blaschke product with zeros \(\{z_n\}_n \). We may assume that \(b \) is sparse. Then we have \(Z(b) \subset M(B) \cap Z(\psi) \) and \(\text{supp}\ \mu_x \neq \text{supp}\ \mu_y \) for \(x, y \) in \(Z(b) \), \(x \neq y \). By Theorem 5, we get our assertion.

ACKNOWLEDGMENT

The authors would like to thank the referee for shortening the proof of Theorem 1.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHWESTERN LOUISIANA, LAFAYETTE, LOUISIANA 70504

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221, JAPAN

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use