## Non-Cohen-Macaulay symbolic blow-ups for space monomial curves

HTML articles powered by AMS MathViewer

- by Mayumi Morimoto and Shiro Goto PDF
- Proc. Amer. Math. Soc.
**116**(1992), 305-311 Request permission

## Abstract:

Let $\mathfrak {p} = \mathfrak {p}({n_1},{n_2},{n_3})$ denote the prime ideal in the formal power series ring $A = k[[X,Y,Z]]$ over a field $k$ defining the space monomial curve $X = {T^{{n_1}}},Y = {T^{{n_2}}}$, and $Z = {T^{{n_3}}}$ with $\operatorname {GCD} ({n_1},{n_2},{n_3}) = 1$. Then the symbolic Rees algebra ${R_s}(\mathfrak {p}) = { \oplus _{n \geq 0}}{\mathfrak {p}^{(n)}}$ for $\mathfrak {p} = \mathfrak {p}({n^2} + 2n + 2,{n^2} + 2n + 1,{n^2} + n + 1)$ is Noetherian but not Cohen-Macaulay if ${\text {ch}}k = p > 0$ and $n = {p^e}$ with $e \geq 1$. The same is true for $\mathfrak {p} = \mathfrak {p}({n^2},{n^2} + 1,{n^2} + n + 1)$ if ${\text {ch}}k = p > 0$ and $n = {p^e} \geq 3$ .## References

- R. C. Cowsik,
*Symbolic powers and number of defining equations*, Algebra and its applications (New Delhi, 1981) Lecture Notes in Pure and Appl. Math., vol. 91, Dekker, New York, 1984, pp. 13–14. MR**750839** - Shiro Goto, Koji Nishida, and Yasuhiro Shimoda,
*The Gorensteinness of symbolic Rees algebras for space curves*, J. Math. Soc. Japan**43**(1991), no. 3, 465–481. MR**1111598**, DOI 10.2969/jmsj/04330465 - Jürgen Herzog and Bernd Ulrich,
*Self-linked curve singularities*, Nagoya Math. J.**120**(1990), 129–153. MR**1086575**, DOI 10.1017/S0027763000003305 - Craig Huneke,
*The primary components of and integral closures of ideals in $3$-dimensional regular local rings*, Math. Ann.**275**(1986), no. 4, 617–635. MR**859334**, DOI 10.1007/BF01459141 - Craig Huneke,
*Hilbert functions and symbolic powers*, Michigan Math. J.**34**(1987), no. 2, 293–318. MR**894879**, DOI 10.1307/mmj/1029003560 - Masayoshi Nagata,
*On the fourteenth problem of Hilbert*, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp. 459–462. MR**0116056** - Paul C. Roberts,
*A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian*, Proc. Amer. Math. Soc.**94**(1985), no. 4, 589–592. MR**792266**, DOI 10.1090/S0002-9939-1985-0792266-5
J.-P. Serré, - A. Simis and Ngô Việt Trung,
*The divisor class group of ordinary and symbolic blow-ups*, Math. Z.**198**(1988), no. 4, 479–491. MR**950579**, DOI 10.1007/BF01162869 - Wolmer V. Vasconcelos,
*Symmetric algebras and factoriality*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 467–496. MR**1015535**, DOI 10.1007/978-1-4612-3660-3_{2}6

*Algèbre locale: multilicités*, 3rd ed., Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin and New York, 1975.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**116**(1992), 305-311 - MSC: Primary 13A30; Secondary 13H10, 14H50, 14M05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1095226-6
- MathSciNet review: 1095226