ON SOME PROPERTY OF FUNCTIONS DEFINED ON R^2 THAT ARE \mathcal{J}-APPROXIMATELY CONTINUOUS WITH RESPECT TO ONE VARIABLE

R. CARRESE AND E. LAZAROW

(Communicated by Andrew M. Bruckner)

Abstract. Balcerzak, Lazarow, and Wilczyński proved that every separately \mathcal{J}-approximately continuous function is Baire 2. In this paper we shall prove that if f is a function \mathcal{J}-approximately continuous with respect to one of its variables and of the α-class of Baire with respect to the other one, then f is of the $(\alpha + 1)$-class of Baire in R^2.

In this paper \mathcal{I} denotes the σ-ideal of sets of the first category on the line and \mathcal{B} denotes the σ-algebra of subsets of R having the Baire property. We shall say that 0 is an \mathcal{I}-density point of a set $A \in \mathcal{B}$ if and only if for each increasing sequence of natural numbers $\{n_m\}_{m \in \mathbb{N}}$ there exists a subsequence $\{n_{m_p}\}_{p \in \mathbb{N}}$ such that the set $\{x : \chi_{n_{m_p} \cdot A \cap [1, -1]} \rightarrow 1 \} \in \mathcal{I}$, where χ_C denotes the characteristic function of the set C. We shall say that x_0 is an \mathcal{I}-density point $A \in \mathcal{B}$ if and only if x_0 is an \mathcal{I}-density point of the set $A - x_0 = \{x - x_0 : x \in A\}$. We shall say that x_0 is an \mathcal{I}-dispersion point of $A \in \mathcal{B}$ if and only if x_0 is an \mathcal{I}-density point of $R - A$. The family of all sets $A \in \mathcal{B}$ such that each point of A is its \mathcal{I}-density point forms a topology called the \mathcal{I}-density topology. The functions that are continuous with respect to the \mathcal{I}-density topology are called \mathcal{I}-approximately continuous (see [4]).

We shall say that $f : R^2 \rightarrow R$ is \mathcal{I}-approximately continuous in the direction x (resp. y) at (x_0, y_0) if the function $f(x, y_0)$ (resp. $f(x_0, y)$) is \mathcal{I}-approximately continuous at x_0 (resp. y_0) as a function of x (resp. y). We shall say that $f : R^2 \rightarrow R$ is separately approximately continuous if and only if f is \mathcal{I}-approximately continuous in the direction x and y simultaneously.

In the sequel we shall need the following

Proposition. Let G be an open set of the real line; then 0 is an \mathcal{I}-dispersion point of G if and only if for every natural number n there exist a natural number k and a real number $\delta > 0$ such that for each $h \in (0, \delta)$ and for each $i \in \{1, \ldots, n\}$ there exist two natural numbers $j, j' \in \{1, \ldots, k\}$ such that

$$G \cap \left(\left(\frac{i - 1}{n} + \frac{j - 1}{nk} \right) h, \left(\frac{i - 1}{n} + \frac{j}{nk} \right) h \right) = \emptyset$$

Received by the editors February 25, 1991.

1991 Mathematics Subject Classification. Primary 26B05, 26A21.
and
\[G \cap \left(-\left(\frac{i-1}{n} + \frac{j}{nk} \right) h, \left(\frac{i-1}{n} + \frac{j-1}{nk} \right) h \right) = \emptyset. \]

For the proof see [2, Theorem 1].

We shall say that \(x_0 \) is a deep \(\mathcal{I} \)-density point of the set \(A \in \mathcal{B} \) if there exists an open set \(B \supset R - A \) such that \(x_0 \) is an \(\mathcal{I} \)-dispersion point of \(B \). The family of all sets \(A \in \mathcal{B} \) such that each point of \(A \) is its deep \(\mathcal{I} \)-density point forms a topology called the deep \(\mathcal{I} \)-density topology. The \(\mathcal{I} \)-approximately continuous functions are continuous with respect to this topology (see [5, 3]).

Lemma. Let \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) be a function \(\mathcal{I} \)-approximately continuous at \((x_0, y_0) \) in the direction \(x \). Then \(f(x_0, y_0) \leq \alpha \) if and only if for every \(n \in \mathbb{N} \) there exist \(k \in \mathbb{N} \), \(k > n \), and \(n \) rational numbers \(r^n_1, \ldots, r^n_n \) such that for each \(i \in \{1, \ldots, n\} \), \(r^n_i \in (x_0 + (i-1)/nk, x_0 + i/nk) \), and \(f(r^n_i, y_0) < \alpha + 1/n \).

Proof. For simplicity assume that \((x_0, y_0) = (0,0) \). Let \(n \in \mathbb{N} \); if \(f(0,0) \leq \alpha \) then \(f(0,0) < \alpha + 1/n \) and \((0,0) \) is a deep \(\mathcal{I} \)-density point of the set \(\{ (x,0) : f(x,0) < \alpha + 1/n \} \) in the direction \(x \). Therefore there exist \(p \in \mathbb{N} \) and \(\delta > 0 \) such that for each \(i \in \{1, \ldots, n\} \) and for each \(h < \delta \) there exists \(j \in \{1, \ldots, k\} \) such that
\[
\left[\frac{(i-1)p + j - 1}{np}, \frac{(i-1)p + j}{np} \right] \times \{0\} \subset \left\{ (x,0) : f(x,0) < \alpha + \frac{1}{n} \right\}.
\]

Let \(k > \max\{n, 1/\delta\} \). Then for each \(i \in \{1, \ldots, n\} \) there exists a rational number \(r^n_i \in \left[\frac{(i-1)p + j - 1}{np}, \frac{(i-1)p + j}{np} \right] \subset \left[\frac{i-1}{nk}, \frac{i}{nk} \right] \) such that \(f(r^n_i, 0) < \alpha + 1/n \).

Conversely, for each \(n \in \mathbb{N} \) let \(k \) be a natural number greater than \(n \), and let \(r^n_1, \ldots, r^n_n \) be rational numbers such that for each \(i \in \{1, \ldots, n\} \) we have \(r^n_i \in ((i-1)/nk, i/nk) \) and \(f(r^n_i, 0) < \alpha + 1/n \). We shall show that \(f(0,0) \leq \alpha \).

Let \(A = \bigcup_{n=1}^{\infty} \{ r^n_1, \ldots, r^n_n \} \). We shall show that for each \(p \in \mathbb{N} \) and \(\delta > 0 \) there exists \(h < \delta \) such that for each \(j \in \{1, \ldots, p\} \), \(((j-1)h/p, jh/p) \cap A \neq \emptyset \). Let \(p \in \mathbb{N} \) and \(\delta > 0 \). Choose \(n \in \mathbb{N} \) such that \(n > \max\{2p, \frac{1}{\delta}\} \). Then there exist \(k > n \) and \(r^n_1, \ldots, r^n_n \) such that for each \(i \in \{1, \ldots, n\} \), \(r^n_i \in ((i-1)/nk, i/nk) \). Put \(h = 1/k < 1/n < \delta \).

Since \(n > 2p \), we observe that for each \(j \in \{1, \ldots, p\} \) there exists \(i \in \{1, \ldots, n\} \) such that
\[
\left[\frac{i-1}{nk}, \frac{i}{nk} \right] \subset \left[\frac{j-1}{p}, \frac{j}{p} \right].
\]

Therefore for each \(j \in \{1, \ldots, p\} \),
\[
\left(\frac{j-1}{p}, \frac{j}{p} \right) \cap A \neq \emptyset.
\]

If \(f(0,0) > \alpha \) then there exists \(s \in \mathbb{N} \) such that \(f(0,0) > \alpha + 1/s \).

Since \(f \) is an \(\mathcal{I} \)-approximately continuous function in the direction \(x \) at \((0,0) \), then there exists a closed set \(F \subset \{(x,0) : f(x,0) > \alpha + 1/s\} \) such
that \((0, 0)\) is a point of \(\mathcal{F}\)-density of \(F\) in the direction \(x\). Thus there exist \(p_0 \in \mathbb{N}\) and \(\delta > 0\) such that for each \(h < \delta\) there exists \(j \in \{1, \ldots, p_0\}\) such that \([(j - 1)h/p_0, jh/p_0] \times \{0\} \subset F\).

Let \(h_1 < \delta\) such that for each \(j \in \{1, \ldots, p_0\}\), \([(j - 1)h_1/p_0, jh_1/p_0] \cap A \neq \emptyset\).

Then there exists \(r_1 \in \mathbb{N}\) such that for each \(j \in \{1, \ldots, p_0\}\) we have
\[
\left(\frac{j - 1}{p_0} h_1, \frac{j}{p_0} h_1\right) \cap \{r_1^n, \ldots, r_{n_1}^n\} \neq \emptyset.
\]

Now let \(h_2 < r_1\) such that for each \(j \in \{1, \ldots, p_0\}\) we have \([(j - 1)h_2/p_0, jh_2/p_0] \cap A \neq \emptyset\). Then there exists \(n_2 > n_1, n_2 \in \mathbb{N}\), such that for each \(j \in \{1, \ldots, p_0\}\),
\[
\left(\frac{j - 1}{p_0} h_2, \frac{j}{p_0} h_2\right) \cap \{r_1^{n_2}, \ldots, r_{n_2}^{n_2}\} \neq \emptyset.
\]

By induction we define sequences \(\{h_m\}_{m \in \mathbb{N}}\) and \(\{n_m\}_{m \in \mathbb{N}}\) such that for each \(m \in \mathbb{N}\) we have \(h_m < \delta\),
\[
\left(\frac{j - 1}{p_0} h_m, \frac{j}{p_0} h_m\right) \cap \{r_1^{n_m}, \ldots, r_{n_m}^{n_m}\} \neq \emptyset
\]
and \(\lim_m h_m = 0\), \(\lim_m n_m = \infty\).

Thus, if \(m_0\) is such that \(n_{m_0} > s\) then for each \(j \in \{1, \ldots, n_{m_0}\}\) we have \(f(r_1^{n_{m_0}}, 0) < \alpha + 1/n_{m_0} < \alpha + 1/s\). Therefore for each \(j \in \{1, \ldots, p_0\}\),
\[
\left(\frac{j - 1}{p_0} h_{m_0}, \frac{j}{p_0} h_{m_0}\right) \cap \left\{(x, 0) : f(x, 0) < \alpha + \frac{1}{s}\right\} \neq \emptyset,
\]
a contradiction.

Then \(f(0, 0) \leq \alpha \) and the proof is completed.

An analogous proposition obviously holds for \((x_0, y_0) \in \mathbb{R}^2\) such that \(f(x_0, y_0) \geq \alpha\) and for \(f\ \mathcal{F}\)-approximately continuous at \((x_0, y_0)\) in the direction \(y\).

Theorem. Let \(f: \mathbb{R}^2 \to \mathbb{R}\) be a function such that for each \((x_0, y_0) \in \mathbb{R}^2\), \(f\) is \(\mathcal{F}\)-approximately continuous at \((x_0, y_0)\) in the direction \(x\) and of the Baire class \(\alpha\) (with respect to the natural topology) in the direction \(y\). Then \(f\) is a function of the Baire class \(\alpha + 1\) on the plane.

Proof. By the previous lemma we have that for each \(\lambda \in \mathbb{R}\)
\[
\{(x, y) : f(x, y) \leq \lambda\}
\]

\[
= \bigcap_{n=1}^{\infty} \bigcup_{k=n+1}^{\infty} \bigcup_{\{r_1^n, \ldots, r_{n}^n\} \in Q} \bigcap_{i=1}^{n} \left\{x : \left|\frac{i - 1}{n k} < |x - r_i^n| < \frac{i}{n k}\right\} \times \mathbb{R}
\]

\[
\cap \left(\mathbb{R} \times \left\{y : f(r_1^n, y) < \lambda + \frac{1}{n}\right\}\right),
\]

where \(Q\) denotes the set of rational numbers.

If \(f\) is of the Baire class \(\alpha\) in the direction \(y\) at every \((x, y) \in \mathbb{R}^2\) then the set \(\{y : f(r_1^n, y) < \lambda + 1/n\}\) belongs to \(F_\alpha\) if \(\alpha\) is odd and to \(G_\alpha\) if \(\alpha\) is even.\(^1\)

\(^1\)For each ordinal \(\alpha\) such that \(0 < \alpha < \omega_1\), \(F_\alpha\) and \(G_\alpha\) denote the Borel classes with respect to the natural topology.
Therefore \(\{(x, y) : f(x, y) \leq \lambda\} \) belongs to \(F_{\alpha+1} \) if \(\alpha \) is odd and to \(G_{\alpha+1} \) if \(\alpha \) is even.

REFERENCES

Dipartimento di Matematica e Applicazioni “R. Caccioppoli” via Cintia Napoli, Italy
Institut of Mathematics, ul. Stefana Banacha, 22 90-238 Łódź, Poland