NONTRIVIAL SOLUTIONS
OF SEMILINEAR ELLIPTIC EQUATIONS
WITH CONTINUOUS OR DISCONTINUOUS NONLINEARITIES

NORIKO MIZOGUCHI

(Communicated by Barbara L. Keyfitz)

Abstract. In this paper, we are concerned with the boundary value problem of the form $-\Delta u = g(u)$ in Ω, $u|_{\partial \Omega} = 0$, where $g : \mathbb{R} \to \mathbb{R}$ is a continuous function, under assumptions of relations between g and the eigenvalues of $-\Delta$. If g is piecewise continuous on any bounded closed interval in \mathbb{R}, the above equation takes the form $-\Delta u \in [g(u), \tilde{g}(u)]$ in Ω, $u|_{\partial \Omega} = 0$. We obtain the existence of nontrivial solutions in both resonant and nonresonant cases at 0. Our theorems can be also applied when g is discontinuous (may be discontinuous at 0).

1. Introduction

We begin this paper by considering the existence of nontrivial solutions of the boundary value problem of the form

$$-\Delta u = g(u) \quad \text{in} \quad \Omega,$$

where Ω is a bounded domain with smooth boundary $\partial \Omega$ in \mathbb{R}^n and g is a real-valued continuous function on \mathbb{R} such that $g(0) = 0$.

Let $0 < \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots$ denote the eigenvalues of the selfadjoint realization in $L^2(\Omega)$ of $-\Delta$ with the Dirichlet boundary condition. Many authors have studied the existence of nontrivial solutions of the problem (1) when $g(t)/t$ crosses finitely many eigenvalues of $-\Delta$ as t varies from $-\infty$ to $+\infty$. Amann and Zehnder [2] proved by generalized Morse theory that (1) has at least one nontrivial solution if $g \in C^2(\mathbb{R}, \mathbb{R})$ satisfies $\sup_{t \in \mathbb{R}} |g'(t)| < \infty$ and

$$\lambda_{k-1} < g'(0) < \lambda_k \leq \lambda_m < a_* \leq a^* < \lambda_{m+1}$$

for some $m, k \geq 1$

where

$$a_* = \liminf_{|t| \to \infty} \frac{g(t)}{t} \quad \text{and} \quad a^* = \limsup_{|t| \to \infty} \frac{g(t)}{t}.$$
On the other hand, using the Leray-Schauder degree theory, Hirano [6] established the existence of one nontrivial solution of (1) under

\[\lambda_{k-1} < b_* < b^* < \lambda_k \leq \lambda_m < a_* \leq a^* < \lambda_{m+1} \quad \text{for some } k, m \geq 1, \]

where \(a_* \) and \(a^* \) are as above, and

\[b_* = \liminf_{|t| \to 0} \frac{g(t)}{t} \quad \text{and} \quad b^* = \limsup_{|t| \to 0} \frac{g(t)}{t}, \]

without any assumptions of differentiability of \(g \). Hirano's result cannot be applied in the case of resonance at 0. We obtain the existence of one nontrivial solution of (1) under weaker conditions of \(g \) near 0 that contain the resonance case at 0 (Theorem 1). Moreover, there are no results for \(g \) with \(b_* > a^* \) in [6]. We deal with such a function \(g \) in Theorem 2.

It is seen in §3 that the assertions of Theorems 1 and 2 remain valid in the case that \(g \) is a piecewise continuous function on any bounded closed interval of \(\mathbb{R} \) (may be discontinuous at 0), that is,

\[-\Delta u \in [g(u), \bar{g}(u)] \quad \text{in } \Omega \]

\[u|_{\partial \Omega} = 0, \]

where

\[\overline{g}(t) = \liminf_{s \to t} g(s) \quad \text{and} \quad \underline{g}(t) = \limsup_{s \to t} g(s). \]

2. THE CASE THAT \(g \) IS CONTINUOUS

Our purpose in this section is to prove the following two theorems.

Theorem 1. Let \(g: \mathbb{R} \to \mathbb{R} \) be a continuous function with \(g(0) = 0 \). If \(g \) satisfies the condition

\[b^* < \lambda_m < a_* \leq \overline{a} < \lambda_{m+1} \]

for some \(m \geq 1 \), where

\[a_0 = \liminf_{|t| \to \infty} \frac{g(t)}{t}, \quad \overline{a} = \sup_{t \neq 0} \frac{g(t)}{t} \quad \text{and} \quad b^* = \limsup_{|t| \to 0} \frac{g(t)}{t}, \]

then equation (1) has at least one nontrivial solution in \(H^2(\Omega) \cap H_0^1(\Omega) \).

Theorem 2. Let \(g: \mathbb{R} \to \mathbb{R} \) be a continuous function with \(g(0) = 0 \). If \(g \) satisfies

\[\lambda_{k-1} < a \leq a^* < \lambda_k < b_* \]

for some \(k \geq 1 \), where

\[a = \inf_{t \neq 0} \frac{g(t)}{t}, \quad a^* = \limsup_{|t| \to \infty} \frac{g(t)}{t} \quad \text{and} \quad b_* = \liminf_{|t| \to 0} \frac{g(t)}{t}, \]

then there exists at least one nontrivial solution of (1) in \(H^2(\Omega) \cap H_0^1(\Omega) \).

In the following, we write \(H, H^{-1} \), and \(L^2 \) instead of \(H_0^1(\Omega), H^{-1}(\Omega), \) and \(L^2(\Omega) \), respectively. We denote by \(\| \cdot \|, \| \cdot \|_* \), and \(| \cdot | \) the norms of \(H, H^{-1} \), and \(L^2 \), respectively. The notation \(| \cdot | \) is often used for the absolute value of a real number without notice if there is no possibility of
their confusion. The pairing between H and H^{-1} is denoted by $\langle \cdot , \cdot \rangle$. We take $k \in \mathbb{Z}^+$ with $b^* < \lambda_k \leq \lambda_m$ if g satisfies condition (3), and $m \in \mathbb{Z}^+$ with $\lambda_k \leq \lambda_m < b^*$ if g satisfies condition (4). Let H_1, H_2, and H_3 be closed subspaces of H spanned by the eigenfunctions corresponding to the eigenvalues \(\{ \lambda_{m+1}, \lambda_{m+2}, \ldots \} \), \(\{ \lambda_k, \ldots, \lambda_m \} \), and \(\{ \lambda_1, \lambda_2, \ldots, \lambda_{k-1} \} \), respectively. (We consider $\lambda_0 = 0$ and $H_3 = \{0\}$ if $k = 1$.)

For $i = 1, 2, 3$, P_i means the projection from H onto H_i. Define a real-valued function f on H by

\[
(5) \quad f(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \int_0^{u(x)} g(t) \, dt \, dx \quad \text{for} \ u \in H.
\]

Then we have

\[
\langle f'(u), v \rangle = \langle -\Delta u - g(u), v \rangle \quad \text{for any} \ u, v \in H,
\]

and hence weak solutions of (1) coincide with critical points of f.

We need the following two lemmas in order to prove our theorems.

Lemma 1. If g satisfies condition (3) or (4), then the Palais-Smale condition holds for the function f defined by (5), that is, for any sequence $\{u_n\}$ in H such that $\{f(u_n)\}$ is bounded and $\|f'(u_n)\|_* \to 0$ there exists a convergent subsequence of $\{u_n\}$.

Proof. Let $\{u_n\}$ in H satisfy that $\{f(u_n)\}$ is bounded and $\|f'(u_n)\|_* = \| - \Delta u - g(u)\|_* \to 0$. For each u_n, we put $v_n = P_1 u_n$, $w_n = P_2 u_n$ and $z_n = P_3 u_n$. Then

\[
\langle -\Delta u_n - g(u_n), v_n - (w_n + z_n) \rangle = \|v_n\|^2 - \|w_n + z_n\|^2 - \int_H g(u_n)(v_n - (w_n + z_n)) \, dx.
\]

Suppose that g satisfies condition (3). Then there exist positive numbers α with $\lambda_m < \alpha < a_*$ and ρ such that $\alpha \leq g(t)/t \leq \overline{a}$ for all $t \in \mathbb{R}$ with $|t| \geq \rho$. From the continuity of g, for some constant K, we have $|g(t)| \leq K$ for all t with $|t| < \rho$. If $|u_n(x)| \geq \rho$ then

\[
(6) \quad \alpha \leq \frac{g(u_n(x))}{v_n(x) + w_n(x) + z_n(x)} \leq \overline{a}.
\]

If $|u_n(x)| < \rho$ then

\[
|v_n(x)|^2 - |w_n(x) + z_n(x)|^2 \geq -\rho(|v_n(x)| + |w_n(x) + z_n(x)|).
\]

We set

\[
A = \{x \in \Omega: |v_n(x)| > |w_n(x) + z_n(x)|\},
\]

\[
A_1 = \{x \in A: |u_n(x)| \geq \rho\}, \quad A_2 = \{x \in A: |u_n(x)| < \rho\}.
\]

By the second inequality in (6), we have

\[
\int_A g(u_n)(v_n - (w_n + z_n)) \, dx
\]

\[
\leq \int_{A_1} \overline{a}(|v_n|^2 - |w_n + z_n|^2) \, dx + \int_{A_2} K(|v_n| + |w_n + z_n|) \, dx
\]

\[
\leq \int_A (\overline{a}|v_n|^2 - \alpha|w_n + z_n|^2) \, dx + \int_{A_2} (\overline{a}\rho + K)(|v_n| + |w_n + z_n|) \, dx.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Putting

\[B = \{ x \in \Omega : |v_n(x)| \leq |w_n(x) + z_n(x)| \}, \]

\[B_1 = \{ x \in B : |u_n(x)| \geq \rho \}, \quad B_2 = \{ x \in B : |u_n(x)| < \rho \}, \]

it follows that

\[\int_B g(u_n)(v_n - (w_n + z_n)) \, dx \]

\[\leq \int B (\bar{a}|v_n|^2 - \alpha|w_n + z_n|^2) \, dx + \int_{B_2} (\bar{a}\rho + K)(|v_n| + |w_n + z_n|) \, dx \]

from the first inequality in (6). Therefore we have

\[\int_{\Omega} g(u_n)(v_n - (w_n + z_n)) \, dx \]

\[\leq \bar{a}|v_n|^2 - \alpha|w_n + z_n|^2 + 2|\Omega|^{1/2}(\bar{a}\rho + K)|u_n|. \]

Thus it holds that

\[\langle -\Delta u_n - g(u_n), v_n - (w_n + z_n) \rangle \]

\[\geq \left(1 - \frac{\bar{a}}{\lambda_{m+1}} \right) \|v_n\|^2 + \left(\frac{\alpha}{\lambda_m} - 1 \right) \|w_n + z_n\|^2 - 2|\Omega|^{1/2}(\bar{a}\rho + K)|u_n| \]

for some \(\omega_1, \omega_2 > 0 \). The assumption \(\| -\Delta u_n - g(u_n) \|_* \to 0 \) and this inequality imply the boundedness of \(\{ u_n \} \) in \(H \) and hence the existence of a subsequence \(\{ u_{n_j} \} \) of \(\{ u_n \} \) that converges weakly to some \(u \) in \(H \). Then we have

\[\langle -\Delta u_{n_j} - g(u_{n_j}), u_{n_j} - u \rangle \to 0. \]

Since \(H \) is compactly embedded into \(L^2 \), \(\{ u_{n_j} \} \) strongly converges to \(u \) in \(L^2 \) and \(\langle g(u_{n_j}), u_{n_j} - u \rangle \to 0 \), so \(\langle -\Delta u_{n_j}, u_{n_j} - u \rangle \to 0 \). Since \(\{-\Delta u_n\} \) weakly converges to \(-\Delta u \) in \(H^{-1} \), we have

\[\lim_{j \to \infty} \|u_{n_j}\|^2 = \lim_{j \to \infty} \langle -\Delta u_{n_j}, u_{n_j} - u \rangle + \lim_{j \to \infty} \langle -\Delta u_{n_j}, u \rangle = \|u\|^2. \]

Thus we obtain the strong convergence of \(\{ u_{n_j} \} \) in \(H \). The proof is similar in the case that \(g \) satisfies condition (4).

Lemma 2. Under assumption (3), there exist positive constants \(c_i (i = 1, 2, 3, 4), \epsilon_j (j = 1, 2), \) and \(K \) such that

(i) if \(\|P_1u\| \geq c_1, \|P_2u\| \leq c_2, \) and \(\|P_3u\| \leq c_3, \) then \(f(u) \geq \epsilon_1; \)

(ii) if \(\|P_2u\| \leq c_4 \) and \(\|P_3u\| \leq K\|P_2u\|, \) then \(f(u) \geq \epsilon_2\|P_2u\|^2. \)

Proof. For simplicity, we set \(v = P_1u, \ w = P_2u, \) and \(z = P_3u. \) By \(\bar{a} < \lambda_{m+1}, \) we have

\[f(u) \geq \frac{1}{2}\|v + w + z\|^2 - \frac{1}{2}\bar{a}\|v + w + z\|^2 \]

\[\geq \frac{1}{2} \left\{ \left(1 - \frac{\bar{a}}{\lambda_{m+1}} \right) \|v\|^2 - \left(\frac{\bar{a}}{\lambda_k} - 1 \right) \|w\|^2 - \left(\frac{\bar{a}}{\lambda_k - 1} \right) \|z\|^2 \right\}, \]

so there exist positive constants \(c_i (i = 1, 2, 3) \) and \(\epsilon_1 \) for which (i) holds. From \(b^* < \lambda_k, \) we obtain positive constants \(\delta \) and \(\alpha \) with \(\alpha < \lambda_k \) such that
$g(t)/t \leq \alpha$ for all t with $|t| \leq \delta$. In the case that $|v(x) + w(x) + z(x)| \leq \delta$, we have
\[
\frac{1}{2}(\lambda_{m+1}|v|^2 + \lambda_k|w|^2 + \lambda_1|z|^2) - \int_0^{v+w+z} g(t) \, dt
\geq \frac{1}{2}(\lambda_{m+1} - \alpha)|v|^2 + \frac{1}{2}(\lambda_k - \alpha)|w|^2 + \frac{1}{2}(\lambda_1 - \alpha)|z|^2 - \alpha(vw + wz + zv)
\geq \frac{1}{2}(\lambda_k - \alpha)|w|^2 + \frac{1}{2}(\lambda_1 - \alpha)|z|^2 - \alpha(vw + wz + zv).
\]
Now, we choose $d > 0$ such that
\[
(\lambda_{m+1} - \alpha)p^2 + 2(\lambda_{m+1} - \alpha)pq + (\bar{a} - \alpha)q^2 \leq (\lambda_{m+1} - \bar{a})\delta^2
\]
for all $p, q \geq 0$ with $p + q \leq d$. Moreover, we can take $c > 0$ such that
\[
\sup_{x \in \Omega}(|P_2u(x)| + |P_3u(x)|) \leq d
\]
if $\|P_2u + P_3u\| \leq c$. Let $\|w + z\| \leq c$. In the case that $|v(x) + w(x) + z(x)| > \delta$, we have
\[
\left|\int_0^{v+w+z} g(t) \, dt\right| \leq \frac{1}{2}\bar{a}(v + w + z)^2 - \frac{1}{2}(\bar{a} - \alpha)\delta^2
\]
and hence
\[
\frac{1}{2}(\lambda_{m+1}|v|^2 + \lambda_k|w|^2 + \lambda_1|z|^2) - \int_0^{v+w+z} g(t) \, dt
\geq \frac{1}{2}(\lambda_{m+1} - \bar{a})\left\{\left|v + \frac{\alpha - \bar{a}}{\lambda_{m+1} - \bar{a}}(|w| + |z|)\right|^2
\right.
- \frac{\bar{a} - \alpha}{2(\lambda_{m+1} - \bar{a})}\{(\lambda_{m+1} - \alpha)|w|^2 + 2(\lambda_{m+1} - \alpha)|w||z|
\left. + (\bar{a} - \alpha)|z|^2 - (\lambda_{m+1} - \bar{a})\delta^2\}
\]
\[
+ \frac{1}{2}(\lambda_k - \alpha)|w|^2 + \frac{1}{2}(\lambda_1 - \bar{a})|z|^2 - \alpha(vw + wz + zv)
\geq \frac{1}{2}(\lambda_k - \alpha)|w|^2 + \frac{1}{2}(\lambda_1 - \bar{a})|z|^2 - \alpha(vw + wz + zv).
\]
It follows that
\[
f(u) \geq \int_\Omega \left\{\frac{1}{2}(\lambda_{m+1}|v|^2 + \lambda_k|w|^2 + \lambda_1|z|^2) - \int_0^{v+w+z} g(t) \, dt\right\} \, dx
\]
\[
\geq \frac{1}{2}(\lambda_k - \alpha)|w|^2 + \frac{1}{2}(\lambda_1 - \bar{a})|z|^2 \geq \frac{1}{2}\left\{\frac{\lambda_k - \alpha}{\lambda_m}\|w\|^2 - \frac{\bar{a} - \lambda_1}{\lambda_1}\|z\|^2\right\}
\]
if $\|w + z\| \leq c$. Taking $K, c_4, \text{and } c_2$ such that
\[
0 < K < \sqrt{\frac{\lambda_1(\lambda_k - \alpha)}{\lambda_m(\bar{a} - \lambda_1)}}, \quad 0 < (1 + K)c_4 \leq c,
\]
and
\[
0 < c_2 < \frac{\lambda_k - \alpha}{2\lambda_m} \left(1 - K^2\frac{\lambda_m(\bar{a} - \lambda_1)}{\lambda_1(\lambda_k - \alpha)}\right),
\]
(ii) holds.
We are now ready to prove Theorem 1.

Proof of Theorem 1. By \(\lambda_m < a_* \leq \overline{a} < \lambda_{m+1} \), there exists \(r > 0 \) such that
\(f(w + z) < \inf_{v \in H} f(v) \) for all \(w \in H_2 \) and \(z \in H_3 \) with \(\|w + z\| \geq r \). We define
\[
\Gamma^* = \{ A \subset H : A \text{ is a compact set such that } \sigma(A) \ni 0 \}
\]
for any continuous mapping \(\sigma : A \to H_2 \oplus H_3 \) satisfying \(\sigma(u) = u \) for all \(u \in A \cap S \) \((\neq \emptyset) \),

where
\[
S = \{ w + z : w \in H_2 , \ z \in H_3 , \text{ and } \|w + z\| = r \}
\]
and
\[
c^* = \inf_{A \in \Gamma^*} \max_A \left(\geq \inf_{v \in H} f(v) \right).
\]

It is easily seen that if \(A \in \Gamma^* \) and \(\eta : A \to H \) is a continuous mapping such that \(\eta(u) = u \) for all \(u \in A \cap S \), then \(\eta(A) \in \Gamma^* \). Since \(f \) satisfies the Palais-Smale condition by Lemma 1, \(c^* \) is a critical value of \(f \) by a method similar to Rabinowitz's saddle point theorem \([9, 7]\). Assume that 0 is the only critical point of \(f \). Let \(c_i \ (i = 1, 2, 3, 4) \), \(\epsilon_j \ (j = 1, 2) \), and \(K \) be positive numbers in Lemma 2. We set
\[
U = \{ u \in H : \|P_1 u\| < a , \ \|P_2 u\| < b , \ \text{and} \ \|P_3 u\| < c/2 \}
\]
and
\[
V = \{ u \in H : \|P_1 u\| < a , \ \|P_2 u\| < b , \ \text{and} \ \|P_3 u\| < c \},
\]
where \(a = c_1 , \ b = \min\{c_2 , c_4 \} , \ \text{and} \ c = \min\{c_3 , K b \} \). We may suppose that \(r > \sqrt{b^2 + c^2} \) with no loss of generality. Putting \(\gamma = \min\{\epsilon_1 , \epsilon_2 b^2 \} \), it follows that \(f \geq \gamma \) on \(\{ u \in H : \|P_1 u\| \leq a , \ \|P_2 u\| \leq b , \ \text{and} \ \|P_3 u\| \leq c \} \cup \{ u \in H : P_1 u \| \leq a , \ \|P_2 u\| = b , \ \text{and} \ \|P_3 u\| \leq c \} \). From \(c^* = 0 \), for \(0 < \epsilon < \gamma \), there exists \(A \in \Gamma^* \) with \(\max_A f < \epsilon \). Now, we define \(T : H \to H \) by
\[
T(u) = \begin{cases} u & \text{if } u \notin V, \\ \varphi(\|P_3 u\|)(P_1 + P_2)u + P_3 u & \text{if } u \in V, \end{cases}
\]
where \(\varphi : [0, +\infty) \to [0, 1] \) is defined by
\[
\varphi(t) = \begin{cases} 0 & \text{if } 0 \leq t \leq c/2, \\ (2/c)t - 1 & \text{if } c/2 < t \leq c, \\ 1 & \text{if } c < t. \end{cases}
\]

Then, \(T \) is continuous on \(\{ u \in H : \|P_1 u\| = a , \ \|P_2 u\| \leq b , \ \text{and} \ \|P_3 u\| \leq c \} \cap \{ u \in H : \|P_1 u\| \leq a , \ \|P_2 u\| = b , \ \text{and} \ \|P_3 u\| \leq c \} \). By \(\dim H_2 \neq 0 \), we can choose \(w_0 \in H_2 \) with \(0 < \|w_0\| < b/2 \). Define \(\tilde{T} : T(A) \to H \) by
\[
\tilde{T}(u) = \begin{cases} u & \text{if } \|P_3 u\| \geq c/2, \\ P_1 u + Q((P_2 + P_3)u) & \text{if } \|P_3 u\| < c/2, \end{cases}
\]
where \(Q((P_2 + P_3)u) \) means the intersection of the half line \(\{ t(P_2 + P_3)u + (1-t)w_0 : t \geq 0 \} \) and the relative boundary of \(\{ w + z : w \in H_2 , \ z \in H_3 , \ \|w\| < b , \ \text{and} \ \|z\| < c/2 \} \) in \(H_2 \oplus H_3 \). Putting \(\sigma = (P_2 + P_3) \circ \tilde{T} \circ T \), \(\sigma \) is a
continuous mapping from A into $H_2 \oplus H_3$ such that $\sigma(u) = u$ for all $u \in A \cap S$. Since $f \geq \gamma > \varepsilon$ on $\{u \in H : \|P_1 u\| \geq a, \|P_2 u\| \leq b, \text{ and } \|P_3 u\| \leq c\}$, we have $\sigma(A) \not\equiv 0$. This is contrary to $A \in \Gamma^*$. This completes the proof.

Next we prove Theorem 2.

Proof of Theorem 2. From $\lambda_{k-1} < \mu < \mu^* < \lambda_k$, we take $r > 0$ largely enough such that $f(z) < \inf_{\nu \in H_1, \, \omega \in H_2} f(\nu + \omega)$ for all $z \in H_3$ with $\|z\| \geq r$. We set $B = \{z \in H_3 : \|z\| \leq r\}$ and $S = \{z \in H_3 : \|z\| = r\}$. Define

$$
\Gamma = \{g : g \text{ is a continuous mapping from } B \text{ into } H \text{ such that } g(z) = z \text{ for all } z \in S\} \quad (\neq \emptyset)
$$

and

$$
c = \inf_{g \in \Gamma} \sup_{z \in B} f(g(z)) = \inf_{\nu \in H_1, \, \omega \in H_2} \inf_{z \in B} f(\nu + \omega).$$

Similarly to the proof of Theorem 1, c is a critical value of f. Now, suppose that f does not have any nonzero critical points in H. From $\mu > \lambda_{k-1}$, it follows that

$$f(z) < \frac{1}{2} \|z\|^2 - \frac{1}{2} \lambda_{k-1} |z|^2 \leq 0 \quad \text{for all } z \in H_3.$$

By $b^* > \lambda_m$, there exists $\delta > 0$ such that $g(t)/t > \lambda_m$ for all t with $|t| \leq \delta$. Then, we obtain $c_1 > 0$ such that $\sup_{x \in \Omega} |w(x) + z(x)| \leq \delta$ if $w \in H_2$, $z \in H_3$, and $\|w + z\| \leq c_1$. Therefore we have

$$f(w + z) \leq \frac{1}{2} \|w + z\|^2 - \frac{1}{2} \lambda_m |w + z|^2 \leq 0$$

for all $w \in H_2$ and $z \in H_3$ with $\|w + z\| \leq c_1$. We may assume $c_1 < r$ without loss of generality. Choosing $c_2 > 0$ arbitrarily we put

$$U = \{u \in H : \|P_1 u\| < c_2 \text{ and } \|P_2 + P_3 u\| < c_1/2\}.$$

Since $\dim H_2 \neq 0$, by an argument similar to the proof of Theorem 1, we can construct a continuous mapping $g : B \to H$ such that $g(z) = z$ for all $z \in S$, $g(B) \cap U = \emptyset$, and $f(g(z)) \leq 0$ for all $z \in B$. From the well-known deformation lemma, for sufficiently small $\varepsilon_0 > 0$, there exist a continuous mapping $\eta : H \to H$ and a positive number $\varepsilon < \varepsilon_0$ satisfying the conditions

(i) $\eta(u) = u$ if $u \notin f^{-1}([-\varepsilon_0, \varepsilon_0])$;
(ii) $\eta(f^{-1}(\langle -\infty, \varepsilon \rangle) \setminus U) \subset f^{-1}(\langle -\infty, -\varepsilon \rangle) \setminus \{0\}$.

Putting $\tilde{g} = \eta \circ g$, it is clear that $\tilde{g} \in \Gamma$. On the other hand, $\max_{z \in B} f(\tilde{g}(z)) \leq -\varepsilon$ since $g(B) \cap U = \emptyset$. This is contrary to $c = 0$. This completes the proof.

3. The case that g is discontinuous

In this section, we consider the existence of one nontrivial solution of equation (2). Let $g : R \to R$ be a piecewise continuous function on any bounded closed interval (may be discontinuous at 0) with $0 \in [g(0), \overline{g}(0)]$. Then, it is easily seen that the functional f defined by (5) is locally Lipschitz continuous if g satisfies condition (3) or (4). Then, we cannot apply the usual critical point theory for differentiable functionals since f may be nondifferentiable. In order to solve the problem (2), Chang [4] made use of the generalized gradients
for locally Lipschitz continuous functionals introduced by Clarke [5]. In fact, it was shown that
\[\partial f(u) \subset -\Delta u - [g(u), \bar{g}(u)] \quad \text{for each } u \in H, \]
where \(\partial f(u) \) means the generalized gradient of \(f \) at \(u \).

Further, he proved in [4] that the deformation lemma holds in this case. On the other hand, Mizoguchi [8] obtained the existence of one nontrivial solution of (2) under the same conditions as Theorem 1 in [6].

We remark that \(g \) is automatically continuous at 0 in [8]. According to the proofs of Theorems 1 and 2, we see that equation (2) has at least one nontrivial solution if the condition (3) or (4) is assumed.

Theorem 3. Let \(g: \mathbb{R} \to \mathbb{R} \) be a piecewise continuous function on any bounded closed interval with \(0 \in [g(0), \bar{g}(0)] \). If \(g \) satisfies condition (3), then equation (2) has at least one nontrivial solution in \(H^2(\Omega) \cap H^1_0(\Omega) \).

Theorem 4. Let \(g: \mathbb{R} \to \mathbb{R} \) be a piecewise continuous function on any bounded closed interval with \(0 \in [g(0), \bar{g}(0)] \). If \(g \) satisfies condition (4), then there exists at least one nontrivial solution of (2) in \(H^2(\Omega) \cap H^1_0(\Omega) \).

References

DEPARTMENT OF INFORMATION SCIENCE, TOKYO INSTITUTE OF TECHNOLOGY, OH-OYAYAMA, MEGURO-KU, TOKYO 152, JAPAN