A note on the commutants of CSL algebras modulo bimodules
HTML articles powered by AMS MathViewer
- by De Guang Han
- Proc. Amer. Math. Soc. 116 (1992), 707-709
- DOI: https://doi.org/10.1090/S0002-9939-1992-1097342-1
- PDF | Request permission
Abstract:
In this note, we show that for any $\sigma$-weakly closed bimodule $M$ of a CSL algebra $A$ satisfying $M \supseteq A$, the commutant of $A$ modulo $M$ is equal to $M$ itself. Theorem 6 provided a result on the cohomology groups of CSL subalgebras of Von Neumann algebras.References
- Erik Christensen, Derivations of nest algebras, Math. Ann. 229 (1977), no. 2, 155–161. MR 448110, DOI 10.1007/BF01351601
- De Guang Han, On ${\scr A}$-submodules for reflexive operator algebras, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1067–1070. MR 969048, DOI 10.1090/S0002-9939-1988-0969048-7
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- B. E. Johnson, R. V. Kadison, and J. R. Ringrose, Cohomology of operator algebras. III. Reduction to normal cohomology, Bull. Soc. Math. France 100 (1972), 73–96. MR 318908, DOI 10.24033/bsmf.1731
- E. Christopher Lance, Cohomology and perturbations of nest algebras, Proc. London Math. Soc. (3) 43 (1981), no. 2, 334–356. MR 628281, DOI 10.1112/plms/s3-43.2.334
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 707-709
- MSC: Primary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1992-1097342-1
- MathSciNet review: 1097342