Factorization of singular matrices
HTML articles powered by AMS MathViewer
- by A. R. Sourour and Kunikyo Tang
- Proc. Amer. Math. Soc. 116 (1992), 629-634
- DOI: https://doi.org/10.1090/S0002-9939-1992-1097352-4
- PDF | Request permission
Abstract:
We give a necessary and sufficient condition that a singular square matrix $A$ over an arbitrary field can be written as a product of two matrices with prescribed eigenvalues. Except when $A$ is a $2 \times 2$ nonzero nilpotent, the condition is that the number of zeros among the eigenvalues of the factors is not less than the nullity of $A$. We use this result to prove results about products of hermitian and positive semidefinite matrices simplifying and strengthening some known results.References
- C. K. Fong and A. R. Sourour, Sums and products of quasinilpotent operators, Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), no. 1-2, 193–200. MR 781097, DOI 10.1017/S0308210500026081
- Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991. MR 1091716, DOI 10.1017/CBO9780511840371
- Thomas J. Laffey, Products of matrices, Generators and relations in groups and geometries (Lucca, 1990) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 333, Kluwer Acad. Publ., Dordrecht, 1991, pp. 95–123. MR 1206912, DOI 10.1007/978-94-011-3382-1_{4}
- Heydar Radjavi, Products of hermitian matrices and symmetries, Proc. Amer. Math. Soc. 21 (1969), 369–372. MR 240116, DOI 10.1090/S0002-9939-1969-0240116-9
- A. R. Sourour, A factorization theorem for matrices, Linear and Multilinear Algebra 19 (1986), no. 2, 141–147. MR 846549, DOI 10.1080/03081088608817711
- A. R. Sourour, Nilpotent factorization of matrices, Linear and Multilinear Algebra 31 (1992), no. 1-4, 303–308. MR 1199060, DOI 10.1080/03081089208818141
- Pei Yuan Wu, Products of nilpotent matrices, Linear Algebra Appl. 96 (1987), 227–232. MR 910996, DOI 10.1016/0024-3795(87)90346-6
- Pei Yuan Wu, Products of positive semidefinite matrices, Linear Algebra Appl. 111 (1988), 53–61. MR 974046, DOI 10.1016/0024-3795(88)90051-1
- Pei Yuan Wu, The operator factorization problems, Linear Algebra Appl. 117 (1989), 35–63. MR 993030, DOI 10.1016/0024-3795(89)90546-6
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 629-634
- MSC: Primary 15A23; Secondary 15A18
- DOI: https://doi.org/10.1090/S0002-9939-1992-1097352-4
- MathSciNet review: 1097352