Finite correspondence of spectra in Noetherian ring extensions
HTML articles powered by AMS MathViewer
- by Edward S. Letzter
- Proc. Amer. Math. Soc. 116 (1992), 645-652
- DOI: https://doi.org/10.1090/S0002-9939-1992-1098402-1
- PDF | Request permission
Abstract:
Let $R[unk]S$ be an embedding of associative noetherian rings such that $S$ is finitely generated as a right $R$-module. There is a correspondence from the prime spectrum of $S$ to the prime spectrum of $R$ obtained by associating to a given prime ideal $P$ of $S$ the prime ideals of $R$ minimal over $P \cap R$. The prime and primitive ideal theories for several specific noncommutative noetherian rings, including group algebras, PI algebras, and enveloping algebras, depend on understanding instances of this correspondence. We prove that the correspondence has finite fibers for a class of noetherian ring extensions that unites these examples.References
- M. Artin and W. Schelter, Integral ring homomorphisms, Adv. in Math. 39 (1981), no. 3, 289–329. MR 614165, DOI 10.1016/0001-8708(81)90005-0
- Walter Borho, Invariant dimension and restricted extension of Noetherian rings, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 34th Year (Paris, 1981) Lecture Notes in Math., vol. 924, Springer, Berlin-New York, 1982, pp. 51–71. MR 662252
- Walter Borho, On the Joseph-Small additivity principle for Goldie ranks, Compositio Math. 47 (1982), no. 1, 3–29. MR 668778
- Kenneth A. Brown, Localisation at cliques in group rings, J. Pure Appl. Algebra 41 (1986), no. 1, 9–16. MR 844460, DOI 10.1016/0022-4049(86)90096-4
- Kenneth A. Brown and R. B. Warfield Jr., The influence of ideal structure on representation theory, J. Algebra 116 (1988), no. 2, 294–315. MR 953153, DOI 10.1016/0021-8693(88)90219-0
- Jacques Dixmier, Idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple complexe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1628–A1630 (French). MR 308225
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Timothy J. Hodges and James Osterburg, A rank two indecomposable projective module over a Noetherian domain of Krull dimension one, Bull. London Math. Soc. 19 (1987), no. 2, 139–144. MR 872127, DOI 10.1112/blms/19.2.139
- Jens Carsten Jantzen, Einhüllende Algebren halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 3, Springer-Verlag, Berlin, 1983 (German). MR 721170, DOI 10.1007/978-3-642-68955-0
- A. V. Jategaonkar, Localization in Noetherian rings, London Mathematical Society Lecture Note Series, vol. 98, Cambridge University Press, Cambridge, 1986. MR 839644, DOI 10.1017/CBO9780511661938
- A. Joseph and L. W. Small, An additivity principle for Goldie rank, Israel J. Math. 31 (1978), no. 2, 105–114. MR 516246, DOI 10.1007/BF02760541
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- T. H. Lenagan and R. B. Warfield Jr., Affiliated series and extensions of modules, J. Algebra 142 (1991), no. 1, 164–187. MR 1125211, DOI 10.1016/0021-8693(91)90223-U
- Edward S. Letzter, Prime ideals in finite extensions of Noetherian rings, J. Algebra 135 (1990), no. 2, 412–439. MR 1080857, DOI 10.1016/0021-8693(90)90299-4
- Edward Letzter, Primitive ideals in finite extensions of Noetherian rings, J. London Math. Soc. (2) 39 (1989), no. 3, 427–435. MR 1002455, DOI 10.1112/jlms/s2-39.3.427
- Edward S. Letzter, Prime and primitive ideals in enveloping algebras of solvable Lie superalgebras, Abelian groups and noncommutative rings, Contemp. Math., vol. 130, Amer. Math. Soc., Providence, RI, 1992, pp. 237–255. MR 1176123, DOI 10.1090/conm/130/1176123
- Ian M. Musson, A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra, Adv. Math. 91 (1992), no. 2, 252–268. MR 1149625, DOI 10.1016/0001-8708(92)90018-G
- Donald S. Passman, Infinite crossed products, Pure and Applied Mathematics, vol. 135, Academic Press, Inc., Boston, MA, 1989. MR 979094
- J. C. Robson, Prime ideals in intermediate extensions, Proc. London Math. Soc. (3) 44 (1982), no. 2, 372–384. MR 647438, DOI 10.1112/plms/s3-44.2.372
- Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Manfred Scheunert, The theory of Lie superalgebras, Lecture Notes in Mathematics, vol. 716, Springer, Berlin, 1979. An introduction. MR 537441
- Barbara Cortzen and Lance W. Small, Finite extensions of rings, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1058–1062. MR 954983, DOI 10.1090/S0002-9939-1988-0954983-6
- J. T. Stafford, The Goldie rank of a module, Noetherian rings and their applications (Oberwolfach, 1983) Math. Surveys Monogr., vol. 24, Amer. Math. Soc., Providence, RI, 1987, pp. 1–20. MR 921075, DOI 10.1090/surv/024/01
- David A. Vogan Jr., The orbit method and primitive ideals for semisimple Lie algebras, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 281–316. MR 832204
- R. B. Warfield Jr., Prime ideals in ring extensions, J. London Math. Soc. (2) 28 (1983), no. 3, 453–460. MR 724714, DOI 10.1112/jlms/s2-28.3.453
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 645-652
- MSC: Primary 16D30; Secondary 16R20, 16S34, 16W55
- DOI: https://doi.org/10.1090/S0002-9939-1992-1098402-1
- MathSciNet review: 1098402