A REMARK ON SAKAI'S QUADRATIC RADON-NIKODYM THEOREM

HIDEKI KOSAKI

(Communicated by Theodore W. Gamelin)

Abstract. Sakai's Radon-Nikodym theorem (in a quadratic form) for normal states on a von Neumann algebra is considered. We show that the conclusion of this theorem follows from a much weaker order assumption on involved states.

1. Introduction

Let \(\psi \) be a faithful normal state on a von Neumann algebra \(M \). Sakai's Radon-Nikodym theorem (in a quadratic form) [12] states that if \(\varphi \in M_+^+ \) satisfies \(\varphi \leq l\psi \) for some \(l > 0 \) then there exists a (unique) positive operator \(h \) in \(M \) \((0 \leq h \leq l^{1/2}) \) such that \(\varphi(x) = \psi(hxh) \), \(x \in M \). We will point out that the same conclusion follows from a much weaker assumption.

In [8, 11] a necessary and sufficient condition for \(\varphi \) to admit a (bounded) quadratic Radon-Nikodym derivative was found. However, in practical applications checking this condition seems difficult. On the other hand, an unbounded quadratic Radon-Nikodym derivative was studied in [13]. So far the following practical and basic question has been untouched: Does the existence of a (bounded) quadratic Radon-Nikodym derivative follow from the assumption on the order determined by the natural cone \(\mathcal{P}_+ \) [1, 2, 6]? Based on the result [5] we will show that the answer is affirmative (even under a much weaker assumption).

2. Main result

Let \(L^p(M) \) be the Haagerup \(L^p \)-space [7], and assume that \(\varphi \), \(\psi \in M_+^+ \) correspond to \(h_\varphi \), \(h_\psi \in L^1(M)_+ \), respectively. The usual assumption \(\varphi \leq l\psi \) in Sakai's theorem of course means \(h_\varphi \leq lh_\psi \) (as \(\tau \)-measurable operator—here, \(\tau \) is the canonical trace on the crossed product \(M \rtimes_{\sigma} \mathbb{R} \)). Let us assume the following weaker condition [3]: for some \(\varepsilon > 0 \) the Connes Radon-Nikodym cocycle \(f(t) = (D\varphi : D\psi)_t \) \((t \in \mathbb{R}) \) extends to a bounded \(\sup_\varepsilon \|f(z)\| \leq l \), \(\sigma \)-\(\omega \) continuous function on the strip \(-\varepsilon/2 \leq \text{Im} \ z \leq 0 \) that is analytic in the interior.

Received by the editors March 18, 1991 and, in revised form, April 9, 1991.
1991 Mathematics Subject Classification. Primary 46L10, 46L30.
The author is on leave from the Department of Mathematics, College of General Education, Kyushu University, Fukuoka, 810, Japan.

\(\copyright 1992 \) American Mathematical Society
0002-9939/92 \$1.00 + \$25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For a vector \(\xi \in \mathcal{D}(h^\epsilon_p/2) \cap \mathcal{D}(h^\epsilon_q/2) \), we consider the two functions
\[
g(z) = h^\epsilon_p z \xi, \quad h(z) = f(z) h^\epsilon_q z.
\]
Each of them is a bounded continuous function on the strip \(-\epsilon/2 \leq \text{Im } z \leq 0\) that is analytic in the interior. Since \(f(t) = (D\varphi : D\psi)_t = h^\epsilon_p h^\epsilon_q^{-1} \), \(t \in \mathbb{R} \), we have \(g(z) = h(z) \) for \(z = t \in \mathbb{R} \). Uniqueness of analytic continuation shows \(g(-i\epsilon/2) = h(-i\epsilon/2) \), that is,
\[
h^\epsilon_p z \xi = uh^\epsilon_q z \xi, \quad \xi \in \mathcal{D},
\]
with \(u = f(-i\epsilon/2) \in \mathcal{M} \), \(\|u\| \leq l \). Since \(D \) is a common core for the (\(\tau \)-measurable) operators \(h^\epsilon_p/2 \) and \(uh^\epsilon_q/2 \), we conclude that
\[
h^\epsilon_p = uh^\epsilon_q/2, \quad h^\epsilon_q = h^\epsilon_p u^* uh^\epsilon_q/2 \leq \|u\|^2 h^\epsilon_p \leq l^2 h^\epsilon_q.
\]
Furuta's inequality [5] states that, whenever bounded operators \(A, B \) satisfy \(A > B > 0 \), we get
\[
A^{(p+2r)/q} \geq \left(A^r B^p A^r\right)^{1/q}
\]
for \(r \geq 0, \ p \geq 0, \ q \geq 1, \ (1+2r)q \geq p+2r \). Since this inequality remains valid for \(\tau \)-measurable operators (see the next section), with \(p = 1/\epsilon, \ r = p/2, \ q = 2 \) we get
\[
(h^\epsilon_p/2 h^\epsilon_q h^\epsilon_q/2)^{1/2} \leq l^{1/\epsilon} h^\epsilon_q.
\]
Notice that
\[
\begin{cases}
(h^\epsilon_p/2 h^\epsilon_q h^\epsilon_q/2)^{1/2} = |h^\epsilon_p/2 h^\epsilon_q/2|, \\
\text{tr}(h^\epsilon_p/2 h^\epsilon_q/2 x) = \text{tr}(x h^\epsilon_p/2 h^\epsilon_q/2) = (x h^\epsilon_p/2 h^\epsilon_q/2)_{L^2(M)}, \quad x \in \mathcal{M}.
\end{cases}
\]
Lemma 1 [8, Theorem A]. There exists a (unique) positive operator \(h \) in \(M \) such that \(\varphi(x) = \psi(h x h) \), \(x \in \mathcal{M} \), if and only if the absolute value part \(|\chi_\varphi| \) of the polar decomposition of \(\chi_\varphi = (\xi_\varphi, \xi_\psi) \in \mathcal{M}_* \) satisfies \(|\chi_\varphi| \leq l \psi \) for some \(l > 0 \). Furthermore, in this case \(h \) is exactly \(\|D\chi_\varphi : D\psi\|_{-1/2} \) (so that \(0 \leq h \leq l^2 \)).

In \(L^p \)-space languages the vectors \(\xi_\varphi, \xi_\psi \in \mathcal{P}_\varphi \) are \(h^\epsilon_p/2, \ h^\epsilon_q/2 \in L^2(M)_+ \), respectively. Hence (3) shows that \(\chi_\varphi \in \mathcal{M}_* \), \(|\chi_\varphi| \in \mathcal{M}_*^+ \) correspond to \(h^\epsilon_p/2 h^\epsilon_q/2 \in L^1(M) \), \((h^\epsilon_p/2 h^\epsilon_q/2)^{1/2} \in L^1(M)_+ \), respectively. Therefore, (2) means \(|\chi_\varphi| \leq l^{1/\epsilon} \psi \), and Lemma 1 shows the main result of the article.

Theorem 2. Let \(\psi \) be a faithful normal state on a von Neumann algebra \(M \). Assume that \(\varphi \in M^+_\sigma \) satisfies: for some \(\epsilon > 0 \), \(f(t) = (D\varphi : D\psi)_t \), \(t \in \mathbb{R} \) extends to a bounded \((\sup_z \|f(z)\| \leq l) \), \(\sigma \)-\(\omega \) continuous function on the strip \(-\epsilon/2 \leq \text{Im } z \leq 0 \) that is analytic in the interior. Then there exists a unique positive operator \(h \) in \(M \) \((0 \leq h \leq l^{1/\epsilon} 1) \) such that \(\varphi(x) = \psi(h x h) \), \(x \in \mathcal{M} \).

For \(\epsilon = 1 \) the theorem is exactly the usual version of Sakai's theorem. When \(\epsilon = 1/2 \), the assumption is equivalent to \(L^2 \xi_\varphi - \xi_\varphi \in \mathcal{P}_\varphi \) (as was shown in [2]). We thus have shown
Corollary 3. Assume that the unique implementing vectors ξ_φ, ξ_ψ in the natural cone \mathcal{P}^n satisfy $l\xi_\psi - \xi_\varphi \in \mathcal{P}^n$. Then there exists a unique positive operator h in M ($0 \leq h \leq 1$) such that $\varphi(x) = \psi(hxh)$, $x \in M$.

The author does not know (and doubts) if the assumption $l\xi_\psi - \xi_\varphi \in \mathcal{P}^n$ guarantees the existence of a bounded Radon-Nikodym derivative in a Jordan form, i.e., $k \in M_+$ satisfying $\varphi(x) = \psi(kx + \lambda k)$, $x \in M$ (see [8, Proposition 3.2.6; 9, Theorem 1.9]). If the answer is affirmative, then we would obtain a different proof of Corollary 3 (because of [8, Proposition 3.2.7]). On the other hand, starting from the same assumption, Araki [1, Corollary, p. 334] showed the following “vector version”: there exists a positive operator $k \in M$ satisfying $\xi_\varphi = k\xi_\psi + \int k\xi_\psi$. Based on Araki’s result (and without using Furuta’s inequality) one can prove Corollary 3 (by making use of techniques in [8, 10, 11]). However, the proof presented in the article (valid under the much weaker assumption $h^e_\varphi \leq l^2h^e_\psi$) seems easier and more natural.

3. Furuta’s inequality for τ-measurable operators

Here we show that (1) remains valid for τ-measurable operators $A \geq B \geq 0$.

Using the spectral projections $\{e_n\}$ of A, we set

$$A_n = e_nA(e_nA) \geq B_n = e_nBe_n \quad (n = 1, 2, \ldots).$$

Since $A_n \geq B_n$ are bounded, (1) implies

$$A^{(p+2r)/q} \geq A_n^{(p+2r)/q} \geq (A_n^A A_n^A)^{1/q}.$$ \hfill (4)

Choose and fix $t > 0$. Let $\mu_t(\cdot)$ be the “tth” singular number (see [4] for details). We estimate

$$\mu_t(B - B_n) = \mu_t(B(1 - e_n) + (1 - e_n)Be_n)
\leq \mu_{t/2}(B(1 - e_n)) + \mu_{t/2}((1 - e_n)Be_n)
\leq 2\mu_{t/2}(B(1 - e_n))
\leq 2\mu_{t/4}(B^{1/2})\mu_{t/4}(B^{1/2}(1 - e_n))$$

(note $\mu_{t/4}(B^{1/2}) < +\infty$ since B is τ-measurable)

$$= 2\mu_{t/4}(B^{1/2})\mu_{t/4}(B^{1/2}(1 - e_n))
= 2\mu_{t/4}(B^{1/2})\mu_{t/4}((1 - e_n)B(1 - e_n))^{1/2}
\leq 2\mu_{t/4}(B^{1/2})\mu_{t/4}((1 - e_n)A(1 - e_n))^{1/2} \quad (\text{since } 0 \leq B \leq A)
= 2\mu_{t/4}(B^{1/2})\mu_{t/4}(A - A_n)^{1/2}.$$ \hfill (5)

When $n \to +\infty$, $A_n \to A$ in measure, hence, $\mu_{t/4}(A - A_n) \to 0$. From the above estimate, when $n \to +\infty$, $\mu_t(B - B_n) \to 0$ (for each $t > 0$). We thus know $B_n \to B$ in measure. Thanks to Tikhonov’s result [14] we conclude that

$$(A^A_n B^A_n A^A_n) \to (A^A B^A A^A)^{1/q}$$

in measure. Therefore, by letting $n \to +\infty$ in (4), we get (1) for τ-measurable operators.

References

5. T. Furuta, \(A \geq B \geq 0 \) assures \((B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q} \) for \(r \geq 0, \ p \geq 0, \ q \geq 1 \) with \((1 + 2r)q \geq p + 2r \), Proc. Amer. Math. Soc. 101 (1987), 85–88.

