The type of the maximal operators of a class of Walsh convolution operators
HTML articles powered by AMS MathViewer
- by Ze Lin He and David Mustard
- Proc. Amer. Math. Soc. 116 (1992), 711-719
- DOI: https://doi.org/10.1090/S0002-9939-1992-1099342-4
- PDF | Request permission
Abstract:
This paper discusses the properties of a class of $p$-adic Walsh convolution operators. The class consists of those $1$-parameter sets of operators with kernels that can be represented as the $p$-adic Walsh-Fourier integral of a uniformly quasi-convex function. The paper proves that the maximal operators associated with each $1$-parameter set are all of strong type $(\infty ,\infty )$ and of weak type $(1,1)$.References
- S. L. Blumin, On the linear summation method for Fourier series with respect to a multiplicative system, Sibirsk Mat. Z. 9 (1968), no. 2, 449-455. (Russian)
- Paul L. Butzer and Rolf J. Nessel, Fourier analysis and approximation, Pure and Applied Mathematics, Vol. 40, Academic Press, New York-London, 1971. Volume 1: One-dimensional theory. MR 0510857, DOI 10.1007/978-3-0348-7448-9
- N. J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588–591. MR 70757, DOI 10.1073/pnas.41.8.588
- N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372–414. MR 32833, DOI 10.1090/S0002-9947-1949-0032833-2
- Ze Lin He, Notes on approximations of Walsh functions, Nanjing Daxue Xuebao Ziran Kexue Ban 4 (1981), 409–418 (Chinese, with English summary). MR 657733
- Ze Lin He, General linear summation of the Vilenkin-Fourier series, Acta Math. Hungar. 46 (1985), no. 3-4, 285–295. MR 832721, DOI 10.1007/BF01955741 —, On representation of quasi-convex functions by $L({\mathbb {R}^ + })$-Walsh transform, J. Nanjing Univ. Math. Biquarterly 1 (1987), 15-20.
- J. Pál and Peter Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 1-2, 155–164. MR 450884, DOI 10.1007/BF01896477
- F. Schipp, Über gewisse Maximaloperatoren, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 18 (1975), 189–195 (1976). MR 430665
- William R. Wade, Recent developments in the theory of Walsh series, Internat. J. Math. Math. Sci. 5 (1982), no. 4, 625–673. MR 679409, DOI 10.1155/S0161171282000611
- R. G. Selfridge, Generalized Walsh transforms, Pacific J. Math. 5 (1955), 451–480. MR 79145, DOI 10.2140/pjm.1955.5.451
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Shigeki Yano, Cesàro summability of Walsh-Fourier series, Tohoku Math. J. (2) 9 (1957), 267–272. MR 95384, DOI 10.2748/tmj/1178244781
- Wo Sang Young, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc. 218 (1976), 311–320. MR 394022, DOI 10.1090/S0002-9947-1976-0394022-8
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 711-719
- MSC: Primary 42C10; Secondary 47B35
- DOI: https://doi.org/10.1090/S0002-9939-1992-1099342-4
- MathSciNet review: 1099342