The construction of the maximal $A_ 1$’s in the exceptional algebraic groups
HTML articles powered by AMS MathViewer
- by Donna M. Testerman
- Proc. Amer. Math. Soc. 116 (1992), 635-644
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100666-2
- PDF | Request permission
Abstract:
Let $G$ be a simply connected simple algebraic group of exceptional type defined over an algebraically closed field of characteristic $p > 3,3,5,7,7$, for $G$ of type ${G_2},\;{F_4},\;{E_6},\;{E_7},\;{E_8}$, respectively. We construct the maximal closed connected subgroups of $G$, that are simple of type ${A_1}$. This completes Seitz’s classification (under the indicated prime restrictions) of the maximal closed connected subgroups of $G$.References
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Gary M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 90 (1991), no. 441, iv+197. MR 1048074, DOI 10.1090/memo/0441
- Robert Steinberg, Automorphisms of classical Lie algebras, Pacific J. Math. 11 (1961), 1119–1129. MR 143845, DOI 10.2140/pjm.1961.11.1119
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- Donna M. Testerman, Irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 75 (1988), no. 390, iv+190. MR 961210, DOI 10.1090/memo/0390
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 635-644
- MSC: Primary 20G15; Secondary 20E28, 20G05
- DOI: https://doi.org/10.1090/S0002-9939-1992-1100666-2
- MathSciNet review: 1100666