Smooth perturbations of regular Dirichlet forms
HTML articles powered by AMS MathViewer
- by Peter Stollmann
- Proc. Amer. Math. Soc. 116 (1992), 747-752
- DOI: https://doi.org/10.1090/S0002-9939-1992-1107277-3
- PDF | Request permission
Abstract:
Given a regular Dirichlet form $\mathfrak {h}$, we prove that a measure $\mu$ is smooth iff the domain of $\mathfrak {h} + \mu$ is dense in the domain of $\mathfrak {h}$ with respect to the form norm. The latter condition is in turn equivalent to the convergence of $\mathfrak {h} + a\mu$ to $\mathfrak {h}$.References
- Sergio Albeverio, Johannes Brasche, and Michael Röckner, Dirichlet forms and generalized Schrödinger operators, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 1–42. MR 1037315, DOI 10.1007/3-540-51783-9_{1}5
- Sergio Albeverio and Zhi Ming Ma, Perturbation of Dirichlet forms—lower semiboundedness, closability, and form cores, J. Funct. Anal. 99 (1991), no. 2, 332–356. MR 1121617, DOI 10.1016/0022-1236(91)90044-6
- Sergio Albeverio and Zhi Ming Ma, Nowhere Radon smooth measures, perturbations of Dirichlet forms and singular quadratic forms, Stochastic differential systems (Bad Honnef, 1988) Lect. Notes Control Inf. Sci., vol. 126, Springer, Berlin, 1989, pp. 32–45. MR 1236053, DOI 10.1007/BFb0043770 —, Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms, SFB 237 preprint, 1989.
- J. Baxter, G. Dal Maso, and U. Mosco, Stopping times and $\Gamma$-convergence, Trans. Amer. Math. Soc. 303 (1987), no. 1, 1–38. MR 896006, DOI 10.1090/S0002-9947-1987-0896006-7
- Ph. Blanchard and Zhi Ming Ma, Semigroup of Schrödinger operators with potentials given by Radon measures, Stochastic processes, physics and geometry (Ascona and Locarno, 1988) World Sci. Publ., Teaneck, NJ, 1990, pp. 160–195. MR 1124210 —, Smooth measures and Schrödinger semigroups, BiBoS preprint 295, 1987.
- Ph. Blanchard and Zhi Ming Ma, New results on the Schrödinger semigroups with potentials given by signed smooth measures, Stochastic analysis and related topics, II (Silivri, 1988) Lecture Notes in Math., vol. 1444, Springer, Berlin, 1990, pp. 213–243. MR 1078851, DOI 10.1007/BFb0083618
- Masatoshi Fukushima, Dirichlet forms and Markov processes, North-Holland Mathematical Library, vol. 23, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1980. MR 569058 T. Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin, 1980.
- Barry Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Functional Analysis 28 (1978), no. 3, 377–385. MR 500266, DOI 10.1016/0022-1236(78)90094-0
- Peter Stollmann, Admissible and regular potentials for Schrödinger forms, J. Operator Theory 18 (1987), no. 1, 139–151. MR 912817
- Peter Stollmann and Jürgen Voigt, A regular potential which is nowhere in $L_1$, Lett. Math. Phys. 9 (1985), no. 3, 227–230. MR 793000, DOI 10.1007/BF00402834
- Theo Sturm, Schroedinger equations with discontinuous solutions, Potential theory (Prague, 1987) Plenum, New York, 1988, pp. 333–337. MR 986311, DOI 10.1007/978-1-4613-0981-9_{4}1 —, Störung von Hunt-Prozessen durch signierte additive Funktionale, Dissertation, Erlangen, 1988.
- Jürgen Voigt, Absorption semigroups, their generators, and Schrödinger semigroups, J. Funct. Anal. 67 (1986), no. 2, 167–205. MR 845197, DOI 10.1016/0022-1236(86)90036-4
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 747-752
- MSC: Primary 31C25; Secondary 35J10
- DOI: https://doi.org/10.1090/S0002-9939-1992-1107277-3
- MathSciNet review: 1107277