Construction of compactifications using essential semilattice homomorphisms
HTML articles powered by AMS MathViewer
- by A. Caterino, G. D. Faulkner and M. C. Vipera
- Proc. Amer. Math. Soc. 116 (1992), 851-860
- DOI: https://doi.org/10.1090/S0002-9939-1992-1111215-7
- PDF | Request permission
Abstract:
In this paper we introduce a new method for constructing compactifications of a locally compact space. The method generalizes the notion of a singular compactification to a much larger collection of compactifications, which we call ESH-compactifications. In particular, if $X$ is paracompact, or realcompact, then $\beta X$ is of this form. We also establish conditions that ensure an ESH-compactification is a singular or weakly singular compactification.References
- George L. Cain, Richard E. Chandler, and Gary D. Faulkner, Singular sets and remainders, Trans. Amer. Math. Soc. 268 (1981), no. 1, 161–171. MR 628452, DOI 10.1090/S0002-9947-1981-0628452-5
- A. Caterino and M. C. Vipera, Singular compactifications and compactification lattices, Rend. Circ. Mat. Palermo (2) Suppl. 24 (1990), 299–309. Fourth Conference on Topology (Italian) (Sorrento, 1988). MR 1108213
- Richard E. Chandler, Hausdorff compactifications, Lecture Notes in Pure and Applied Mathematics, Vol. 23, Marcel Dekker, Inc., New York-Basel, 1976. MR 0515002
- Richard E. Chandler and Gary D. Faulkner, Singular compactifications: the order structure, Proc. Amer. Math. Soc. 100 (1987), no. 2, 377–382. MR 884483, DOI 10.1090/S0002-9939-1987-0884483-2
- Richard E. Chandler, Gary D. Faulkner, Josephine P. Guglielmi, and Margaret C. Memory, Generalizing the Alexandroff-Urysohn double circumference construction, Proc. Amer. Math. Soc. 83 (1981), no. 3, 606–608. MR 627703, DOI 10.1090/S0002-9939-1981-0627703-6
- W. W. Comfort, Retractions and other continuous maps from $\beta X$ onto $\beta X\sbs X$, Trans. Amer. Math. Soc. 114 (1965), 1–9. MR 185571, DOI 10.1090/S0002-9947-1965-0185571-9
- Gary D. Faulkner, Compactifications whose remainders are retracts, Proc. Amer. Math. Soc. 103 (1988), no. 3, 984–988. MR 947694, DOI 10.1090/S0002-9939-1988-0947694-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- I. I. Parovičenko, On a universal bicompactum of weight $\aleph$, Dokl. Akad. Nauk SSSR 150 (1963), 36–39. MR 0150732 R. Sikorski, Boolean algebras, Springer-Verlag, New York, 1964.
- Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698
- Henry Wallman, Lattices and topological spaces, Ann. of Math. (2) 39 (1938), no. 1, 112–126. MR 1503392, DOI 10.2307/1968717
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 851-860
- MSC: Primary 54D35; Secondary 54C10, 54D40
- DOI: https://doi.org/10.1090/S0002-9939-1992-1111215-7
- MathSciNet review: 1111215