Locally finite and locally nilpotent derivations with applications to polynomial flows and polynomial morphisms
HTML articles powered by AMS MathViewer
- by Arno van den Essen
- Proc. Amer. Math. Soc. 116 (1992), 861-871
- DOI: https://doi.org/10.1090/S0002-9939-1992-1111440-5
- PDF | Request permission
Abstract:
We give a very simple proof of the fact that the Lorenz equations and the Maxwell-Bloch equations do not have a polynomial flow. We also give an algorithm to decide if a two-dimensional vector field over $\mathbb {R}$ has a polynomial flow and how to compute the solutions (in case the vector field has a polynomial flow).References
- Hyman Bass, A nontriangular action of $\textbf {G}_{a}$ on $\textbf {A}^{3}$, J. Pure Appl. Algebra 33 (1984), no. 1, 1–5. MR 750225, DOI 10.1016/0022-4049(84)90019-7
- Hyman Bass and Gary Meisters, Polynomial flows in the plane, Adv. in Math. 55 (1985), no. 2, 173–208. MR 772614, DOI 10.1016/0001-8708(85)90020-9 B. Coomes, Polynomials flows, symmetry groups, and conditions sufficient for injectivity of maps, PhD thesis, Univ. of Nebraska-Lincoln, 1988.
- Brian A. Coomes, The Lorenz system does not have a polynomial flow, J. Differential Equations 82 (1989), no. 2, 386–407. MR 1027976, DOI 10.1016/0022-0396(89)90140-X
- Brian Coomes and Victor Zurkowski, Linearization of polynomial flows and spectra of derivations, J. Dynam. Differential Equations 3 (1991), no. 1, 29–66. MR 1094723, DOI 10.1007/BF01049488 A. van den Essen, $\mathcal {D}$-modules and the Jacobian Conjecture, Report 9108, Catholic Univ. Nijmegen; Proc. Internat. Conf. $\mathcal {D}$-Modules and Microlocal Geometry, Lisbon, Portugal, October 1990 (to appear).
- Heinrich W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174 (German). MR 8915, DOI 10.1515/crll.1942.184.161
- W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33–41. MR 54574
- Gary H. Meisters, Jacobian problems in differential equations and algebraic geometry, Rocky Mountain J. Math. 12 (1982), no. 4, 679–705. MR 683862, DOI 10.1216/RMJ-1982-12-4-679 —, Polynomial flows on ${\mathbb {R}^n}$, Banach center publications, Vol. 23, Warzawa, 1989.
- Pekka Nousiainen and Moss E. Sweedler, Automorphisms of polynomial and power series rings, J. Pure Appl. Algebra 29 (1983), no. 1, 93–97. MR 704289, DOI 10.1016/0022-4049(83)90083-X
- Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 232770
- Martha K. Smith, Stably tame automorphisms, J. Pure Appl. Algebra 58 (1989), no. 2, 209–212. MR 1001475, DOI 10.1016/0022-4049(89)90158-8
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 861-871
- MSC: Primary 13B10; Secondary 14E09, 34A99, 34C99
- DOI: https://doi.org/10.1090/S0002-9939-1992-1111440-5
- MathSciNet review: 1111440