A characterization of epi-convergence in terms of convergence of level sets
HTML articles powered by AMS MathViewer
- by Gerald Beer, R. T. Rockafellar and Roger J.-B. Wets
- Proc. Amer. Math. Soc. 116 (1992), 753-761
- DOI: https://doi.org/10.1090/S0002-9939-1992-1119262-6
- PDF | Request permission
Abstract:
Let $\operatorname {LSC} (X)$ denote the extended real-valued lower semicontinuous functions on a separable metrizable space $X$. We show that a sequence $\left \langle {{f_n}} \right \rangle$ in $\operatorname {LSC} (X)$ is epi-convergent to $f \in \operatorname {LSC} (X)$ if and only for each real $\alpha$, the level set of height $\alpha$ of $f$ can be recovered as the Painlevé-Kuratowski limit of an appropriately chosen sequence of level sets of the ${f_n}$ at heights ${\alpha _n}$ approaching $\alpha$. Assuming the continuum hypothesis, this result fails without separability. An analogous result holds for weakly lower semicontinuous functions defined on a separable Banach space with respect to Mosco epi-convergence.References
- Jean-Pierre Aubin and Hélène Frankowska, Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1048347
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850 H. Attouch, R. Lucchetti, and R. Wets, The topology of the $\rho$-Hausdorff distance, Ann. Mat. Pura Appl. (to appear).
- Hédy Attouch and Roger J.-B. Wets, Quantitative stability of variational systems. I. The epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), no. 2, 695–729. MR 1018570, DOI 10.1090/S0002-9947-1991-1018570-0
- D. Azé and J.-P. Penot, Operations on convergent families of sets and functions, Optimization 21 (1990), no. 4, 521–534. MR 1069660, DOI 10.1080/02331939008843576
- J. Baxter, G. Dal Maso, and U. Mosco, Stopping times and $\Gamma$-convergence, Trans. Amer. Math. Soc. 303 (1987), no. 1, 1–38. MR 896006, DOI 10.1090/S0002-9947-1987-0896006-7
- Gerald Beer, Metric spaces with nice closed balls and distance functions for closed sets, Bull. Austral. Math. Soc. 35 (1987), no. 1, 81–96. MR 875510, DOI 10.1017/S000497270001306X
- Gerald Beer, On Mosco convergence of convex sets, Bull. Austral. Math. Soc. 38 (1988), no. 2, 239–253. MR 969914, DOI 10.1017/S0004972700027519
- Gerald Beer, Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc. 108 (1990), no. 1, 117–126. MR 982400, DOI 10.1090/S0002-9939-1990-0982400-8
- Gerald Beer and Jonathan M. Borwein, Mosco convergence and reflexivity, Proc. Amer. Math. Soc. 109 (1990), no. 2, 427–436. MR 1012924, DOI 10.1090/S0002-9939-1990-1012924-9
- G. Beer and R. Lucchetti, Minima of quasi-convex functions, Optimization 20 (1989), no. 5, 581–596. MR 1015430, DOI 10.1080/02331938908843480
- Gerald Beer and Roberto Lucchetti, Convex optimization and the epi-distance topology, Trans. Amer. Math. Soc. 327 (1991), no. 2, 795–813. MR 1012526, DOI 10.1090/S0002-9947-1991-1012526-X
- Gerald Beer and Devidas Pai, On convergence of convex sets and relative Chebyshev centers, J. Approx. Theory 62 (1990), no. 2, 147–169. MR 1068425, DOI 10.1016/0021-9045(90)90029-P
- Jonathan M. Borwein and Simon Fitzpatrick, Mosco convergence and the Kadec property, Proc. Amer. Math. Soc. 106 (1989), no. 3, 843–851. MR 969313, DOI 10.1090/S0002-9939-1989-0969313-4
- J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476. MR 139135, DOI 10.1090/S0002-9939-1962-0139135-6
- Sebastiano Francaviglia, Alojzy Lechicki, and Sandro Levi, Quasiuniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), no. 2, 347–370. MR 813603, DOI 10.1016/0022-247X(85)90246-X
- Ennio De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978) Pitagora, Bologna, 1979, pp. 131–188. MR 533166
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- L. McLinden and Roy C. Bergstrom, Preservation of convergence of convex sets and functions in finite dimensions, Trans. Amer. Math. Soc. 268 (1981), no. 1, 127–142. MR 628449, DOI 10.1090/S0002-9947-1981-0628449-5
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518–535. MR 283586, DOI 10.1016/0022-247X(71)90200-9
- Jean-Paul Penot, The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity, Proc. Amer. Math. Soc. 113 (1991), no. 1, 275–285. MR 1068129, DOI 10.1090/S0002-9939-1991-1068129-X
- R. T. Rockafellar and Roger J.-B. Wets, Variational systems, an introduction, Multifunctions and integrands (Catania, 1983) Lecture Notes in Math., vol. 1091, Springer, Berlin, 1984, pp. 1–54. MR 785574, DOI 10.1007/BFb0098800
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI 10.1016/0022-247X(77)90060-9 Y. Sonntag, Convergence au sens de Mosco; théorie et applications à l’approximation des solutions d’inéquations, Thèse, Université de Provence, Marseille, 1982. M. Soueycatt, Epi-convergence et convergence des sections, Application à la stabilité des $\varepsilon$-points-selles de fonctions convexes-concaves, Publications AVAMAC, Université de Perpignan (2), 1987, 7.01-7.40.
- Makoto Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), no. 4, 301–309. MR 740641, DOI 10.1016/0021-9045(84)90003-0 M. Volle, Contributions à la dualité en optimisation et à l’epi-convergence, Thèse, Université de Pau, Pau, France, 1986.
- R. J.-B. Wets, Convergence of convex functions, variational inequalities and convex optimization problems, Variational inequalities and complementarity problems (Proc. Internat. School, Erice, 1978) Wiley, Chichester, 1980, pp. 375–403. MR 578760
- Roger J.-B. Wets, A formula for the level sets of epi-limits and some applications, Mathematical theories of optimization (Genova, 1981) Lecture Notes in Math., vol. 979, Springer, Berlin-New York, 1983, pp. 256–268. MR 713816
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 753-761
- MSC: Primary 49J45; Secondary 47H19, 54B20, 54C30
- DOI: https://doi.org/10.1090/S0002-9939-1992-1119262-6
- MathSciNet review: 1119262