The symmetric genus of sporadic groups
HTML articles powered by AMS MathViewer
- by M. D. E. Conder, R. A. Wilson and A. J. Woldar
- Proc. Amer. Math. Soc. 116 (1992), 653-663
- DOI: https://doi.org/10.1090/S0002-9939-1992-1126192-2
- PDF | Request permission
Abstract:
Given a finite group $G$, the symmetric genus of $G$ is defined to be the smallest integer $g$ such that $G$ acts faithfully on a closed orientable surface of genus $g$. Previous to this work, the task of determining the symmetric genus for the sporadic simple groups had been completed for all but nine groups: ${{\text {J}}_3}$, $\operatorname {McL}$, $\operatorname {Suz}$, ${\text {OβN}}$, $\operatorname {Co}_2$, $\operatorname {Fi}_{23}$, $\operatorname {Co}_1$, ${\text {B}}$, and ${\text {M}}$. In the present paper the authors resolve the problem for six of these groups, viz. ${{\text {J}}_3}$, $\operatorname {McL}$, $\operatorname {Suz}$, ${\text {OβN}}$, $\operatorname {Co}_2$, and $\operatorname {Co}_1$. Significant progress is also reported for the group $\operatorname {Fi}_{23}$.References
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- John J. Cannon, An introduction to the group theory language, Cayley, Computational group theory (Durham, 1982) Academic Press, London, 1984, pp.Β 145β183. MR 760656
- Marston D. E. Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc. 30 (1984), no.Β 1, 73β90. MR 753563, DOI 10.1017/S0004972700001738
- Marston D. E. Conder, The symmetric genus of alternating and symmetric groups, J. Combin. Theory Ser. B 39 (1985), no.Β 2, 179β186. MR 811121, DOI 10.1016/0095-8956(85)90047-4
- Marston Conder, Hurwitz groups: a brief survey, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no.Β 2, 359β370. MR 1041434, DOI 10.1090/S0273-0979-1990-15933-6
- Marston Conder, The symmetric genus of the Mathieu groups, Bull. London Math. Soc. 23 (1991), no.Β 5, 445β453. MR 1141014, DOI 10.1112/blms/23.5.445
- Marston Conder, Random walks in large finite groups, Australas. J. Combin. 4 (1991), 49β57. Combinatorial mathematics and combinatorial computing (Palmerston North, 1990). MR 1129268 M. D. E. Conder, R. A. Wilson, and A. J. Woldar, The symmetric genus of sporadic groups: announced results (submitted).
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin-New York, 1980. MR 562913
- L. Finkelstein and A. Rudvalis, Maximal subgroups of the Hall-Janko-Wales group, J. Algebra 24 (1973), 486β493. MR 323889, DOI 10.1016/0021-8693(73)90122-1
- A. Hurwitz, Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892), no.Β 3, 403β442 (German). MR 1510753, DOI 10.1007/BF01443420
- Gareth A. Jones and David Singerman, Complex functions, Cambridge University Press, Cambridge, 1987. An algebraic and geometric viewpoint. MR 890746, DOI 10.1017/CBO9781139171915
- Stephen A. Linton, The maximal subgroups of the Thompson group, J. London Math. Soc. (2) 39 (1989), no.Β 1, 79β88. MR 989921, DOI 10.1112/jlms/s2-39.1.79
- Stephen A. Linton and Robert A. Wilson, The maximal subgroups of the Fischer groups $\textrm {Fi}_{24}$ and $\textrm {Fi}β_{24}$, Proc. London Math. Soc. (3) 63 (1991), no.Β 1, 113β164. MR 1105720, DOI 10.1112/plms/s3-63.1.113
- A. M. Macbeath, Generators of the linear fractional groups, Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967) Amer. Math. Soc., Providence, R.I., 1969, pp.Β 14β32. MR 0262379
- Wilhelm Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics, Vol. 61, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0352287
- R. A. Parker, The computer calculation of modular characters (the meat-axe), Computational group theory (Durham, 1982) Academic Press, London, 1984, pp.Β 267β274. MR 760660
- Rimhak Ree, A theorem on permutations, J. Combinatorial Theory Ser. A 10 (1971), 174β175. MR 269519, DOI 10.1016/0097-3165(71)90020-3
- Chih-han Sah, Groups related to compact Riemann surfaces, Acta Math. 123 (1969), 13β42. MR 251216, DOI 10.1007/BF02392383
- Leonard L. Scott, Matrices and cohomology, Ann. of Math. (2) 105 (1977), no.Β 3, 473β492. MR 447434, DOI 10.2307/1970920
- David Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29β38. MR 322165, DOI 10.1112/jlms/s2-6.1.29
- Thomas W. Tucker, Finite groups acting on surfaces and the genus of a group, J. Combin. Theory Ser. B 34 (1983), no.Β 1, 82β98. MR 701174, DOI 10.1016/0095-8956(83)90009-6
- Andrew J. Woldar, On Hurwitz generation and genus actions of sporadic groups, Illinois J. Math. 33 (1989), no.Β 3, 416β437. MR 996351
- Andrew J. Woldar, Representing $M_{11},\;M_{12},\;M_{22}$ and $M_{23}$ on surfaces of least genus, Comm. Algebra 18 (1990), no.Β 1, 15β86. MR 1037897, DOI 10.1080/00927879008823902
- Andrew J. Woldar, Sporadic simple groups which are Hurwitz, J. Algebra 144 (1991), no.Β 2, 443β450. MR 1140615, DOI 10.1016/0021-8693(91)90115-O
- Andrew J. Woldar, The symmetric genus of the Higman-Sims group HS and bounds for Conwayβs groups $\textrm {Co}_1,\textrm {Co}_2$, Illinois J. Math. 36 (1992), no.Β 1, 47β52. MR 1133769 β, On the symmetric genus of simple groups (submitted).
- M. F. Worboys, Generators for the sporadic group $\textrm {Co}_{3}$ as a $(2,\,3,\,7)$ group, Proc. Edinburgh Math. Soc. (2) 25 (1982), no.Β 1, 65β68. MR 648901, DOI 10.1017/S0013091500004144
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 653-663
- MSC: Primary 20D08
- DOI: https://doi.org/10.1090/S0002-9939-1992-1126192-2
- MathSciNet review: 1126192