A characterization of finitely junctioned continua
HTML articles powered by AMS MathViewer
- by Edwin Duda and Paweł Krupski
- Proc. Amer. Math. Soc. 116 (1992), 839-841
- DOI: https://doi.org/10.1090/S0002-9939-1992-1131034-5
- PDF | Request permission
Abstract:
Metric continua which are $k$-junctioned are defined and characterized. Furthermore such continua are shown to be invariant under open or monotone mappings.References
- R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451
- C. E. Burgess, Homogeneous continua which are almost chainable, Canadian J. Math. 13 (1961), 519–528. MR 126255, DOI 10.4153/CJM-1961-043-8
- Edwin Duda and James Kell, Monotone and open mappings on circularly chainable continua, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 109–111. MR 656723 E. Duda, P. Krupski, and J. T. Rogers, Jr., On locally chainable homogeneous continua (submitted).
- W. T. Ingram, An atriodic tree-like continuum with positive span, Fund. Math. 77 (1972), no. 2, 99–107. MR 365516, DOI 10.4064/fm-77-2-99-107
- PawełKrupski, Open images of solenoids, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 76–83. MR 770227, DOI 10.1007/BFb0099923
- Wayne Lewis, Homogeneous treelike continua, Proc. Amer. Math. Soc. 82 (1981), no. 3, 470–472. MR 612742, DOI 10.1090/S0002-9939-1981-0612742-1
- Ira Rosenholtz, Open maps of chainable continua, Proc. Amer. Math. Soc. 42 (1974), 258–264. MR 331346, DOI 10.1090/S0002-9939-1974-0331346-8
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 839-841
- MSC: Primary 54F15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1131034-5
- MathSciNet review: 1131034