Classification theorem for Menger manifolds
HTML articles powered by AMS MathViewer
- by A. Chigogidze
- Proc. Amer. Math. Soc. 116 (1992), 825-832
- DOI: https://doi.org/10.1090/S0002-9939-1992-1143015-6
- PDF | Request permission
Abstract:
We introduce the notion of the $n$-homotopy kernel of a Menger manifold and prove the following theorem: Menger manifolds are $n$-homotopy equivalent if and only if the $n$-homotopy kernels are homeomorphic.References
- Mladen Bestvina, Characterizing $k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988), no. 380, vi+110. MR 920964, DOI 10.1090/memo/0380
- T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR 0423357
- A. Ch. Chigogidze, Compact spaces lying in the $n$-dimensional universal Menger compact space and having homeomorphic complements in it, Mat. Sb. (N.S.) 133(175) (1987), no. 4, 481–496, 559 (Russian); English transl., Math. USSR-Sb. 61 (1988), no. 2, 471–484. MR 911804, DOI 10.1070/SM1988v061n02ABEH003219
- A. Ch. Chigogidze, $n$-shapes and $n$-cohomotopy groups of compacta, Mat. Sb. 180 (1989), no. 3, 322–335, 432 (Russian); English transl., Math. USSR-Sb. 66 (1990), no. 2, 329–342. MR 993228, DOI 10.1070/SM1990v066n02ABEH001316
- A. Ch. Chigogidze, Theory of $n$-shapes, Uspekhi Mat. Nauk 44 (1989), no. 5(269), 117–140 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 5, 145–174. MR 1040271, DOI 10.1070/RM1989v044n05ABEH002279 —, $n$-soft maps of $n$-dimensional spaces, Mat. Z. 46 (1989), 88-95. (Russian) —, $U{V^n}$-equivalence and $n$-equivalence (to appear).
- A. N. Dranishnikov, Universal Menger compacta and universal mappings, Mat. Sb. (N.S.) 129(171) (1986), no. 1, 121–139, 160 (Russian); English transl., Math. USSR-Sb. 57 (1987), no. 1, 131–149. MR 830099, DOI 10.1070/SM1987v057n01ABEH003059
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- Ralph H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941), 333–370. MR 4108, DOI 10.2307/1968905
- R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no. 4, 495–552. MR 645403, DOI 10.1090/S0002-9904-1977-14321-8
- J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213–245. MR 30759, DOI 10.1090/S0002-9904-1949-09175-9
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 825-832
- MSC: Primary 55P15; Secondary 54F35, 57N20
- DOI: https://doi.org/10.1090/S0002-9939-1992-1143015-6
- MathSciNet review: 1143015